Anna Szakiel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/939336/publications.pdf

Version: 2024-02-01

430874 330143 1,482 48 18 37 h-index citations g-index papers 49 49 49 1775 all docs docs citations times ranked citing authors

#	Article	IF	Citations
1	Influence of environmental abiotic factors on the content of saponins in plants. Phytochemistry Reviews, 2011, 10, 471-491.	6.5	252
2	Fruit cuticular waxes as a source of biologically active triterpenoids. Phytochemistry Reviews, 2012, 11, 263-284.	6.5	199
3	The role of sterols in plant response to abiotic stress. Phytochemistry Reviews, 2020, 19, 1525-1538.	6.5	100
4	Changes in the Triterpenoid Content of Cuticular Waxes during Fruit Ripening of Eight Grape (<i>Vitis) Tj ETQq0 2014, 62, 7998-8007.</i>	0 0 rgBT /0 5.2	Overlock 10 T 86
5	Antibacterial and Antiparasitic Activity of Oleanolic Acid and its Glycosides isolated from Marigold (<i>Calendula officinalis</i>). Planta Medica, 2008, 74, 1709-1715.	1.3	74
6	Comparison of the Triterpenoid Content of Berries and Leaves of Lingonberry Vaccinium vitis-idaea from Finland and Poland. Journal of Agricultural and Food Chemistry, 2012, 60, 4994-5002.	5.2	73
7	Saponins in Calendula officinalis L. – Structure, Biosynthesis, Transport and Biological Activity. Phytochemistry Reviews, 2005, 4, 151-158.	6.5	62
8	Triterpenoid Content of Berries and Leaves of Bilberry Vaccinium myrtillus from Finland and Poland. Journal of Agricultural and Food Chemistry, 2012, 60, 11839-11849.	5.2	60
9	Influence of environmental biotic factors on the content of saponins in plants. Phytochemistry Reviews, 2011, 10, 493-502.	6.5	53
10	Effect of jasmonic acid and chitosan on triterpenoid production in Calendula officinalis hairy root cultures. Phytochemistry Letters, 2019, 31, 5-11.	1.2	44
11	Phytochemical characteristics and potential therapeutic properties of blue honeysuckle Lonicera caerulea L. (Caprifoliaceae). Journal of Herbal Medicine, 2019, 16, 100237.	2.0	33
12	Characterization of triterpenoid profiles and triterpene synthase expression in the leaves of eight Vitis vinifera cultivars grown in the Upper Rhine Valley. Journal of Plant Research, 2016, 129, 499-512.	2.4	29
13	Distribution of triterpene acids and their derivatives in organs of cowberry (Vaccinium vitis-idaea L.) plant Acta Biochimica Polonica, 2007, 54, 733-740.	0.5	27
14	Extraction of Triterpenic Acids and Phytosterols from Apple Pomace with Supercritical Carbon Dioxide: Impact of Process Parameters, Modelling of Kinetics, and Scaling-Up Study. Molecules, 2018, 23, 2790.	3.8	26
15	Triterpenoid profile of flower and leaf cuticular waxes of heather <i>Calluna vulgaris</i> Natural Product Research, 2013, 27, 1404-1407.	1.8	25
16	Various Patterns of Composition and Accumulation of Steroids and Triterpenoids in Cuticular Waxes from Screened Ericaceae and Caprifoliaceae Berries during Fruit Development. Molecules, 2019, 24, 3826.	3.8	25
17	Influence of Selected Abiotic Factors on Triterpenoid Biosynthesis and Saponin Secretion in Marigold (Calendula officinalis L.) in Vitro Hairy Root Cultures. Molecules, 2019, 24, 2907.	3.8	22
18	Isolation and biological activities of lyoniside from rhizomes and stems of Vaccinium myrtillus. Phytochemistry Letters, 2011, 4, 138-143.	1.2	20

#	Article	IF	Citations
19	Three Types of Elicitors Induce Grapevine Resistance against Downy Mildew via Common and Specific Immune Responses. Journal of Agricultural and Food Chemistry, 2021, 69, 1781-1795.	5.2	19
20	Biosynthesis of oleanolic acid and its glycosides in Calendula officinalis suspension culture. Plant Physiology and Biochemistry, 2003, 41, 271-275.	5.8	18
21	Enhancement of Phytosterol and Triterpenoid Production in Plant Hairy Root Culturesâ€"Simultaneous Stimulation or Competition?. Plants, 2021, 10, 2028.	3.5	18
22	Variations in Triterpenoid Deposition in Cuticular Waxes during Development and Maturation of Selected Fruits of Rosaceae Family. International Journal of Molecular Sciences, 2020, 21, 9762.	4.1	18
23	Triterpenoid profile of fruit and leaf cuticular waxes of edible honeysuckle Lonicera caerulea var. kamtschatica. Acta Societatis Botanicorum Poloniae, 2017, 86, .	0.8	16
24	Effect of Ethylene and Abscisic Acid on Steroid and Triterpenoid Synthesis in Calendula officinalis Hairy Roots and Saponin Release to the Culture Medium. Plants, 2022, 11, 303.	3.5	15
25	Genome-Based Insights into the Production of Carotenoids by Antarctic Bacteria, Planococcus sp. ANT_H30 and Rhodococcus sp. ANT_H53B. Molecules, 2020, 25, 4357.	3.8	13
26	The content of free and esterified triterpenoids of the native marigold (Calendula officinalis) plant and its modifications in in vitro cultures. Phytochemistry Letters, 2015, 11, 410-417.	1.2	12
27	Comparison of steroids and triterpenoids in leaf cuticular waxes of selected Polish and Russian cultivars and genotypes of edible honeysuckle. Phytochemistry Letters, 2019, 30, 238-244.	1.2	12
28	Impact of different elicitors on grapevine leaf metabolism monitored by 1H NMR spectroscopy. Metabolomics, 2019, 15, 67.	3.0	11
29	Distribution of oleanolic acid glycosides in vacuoles and cell walls isolated from protoplasts and cells of Calendula officinalis leaves. Steroids, 1989, 53, 501-511.	1.8	10
30	Comparison of the profiles of non-glycosylated triterpenoids from leaves of plants of selected species of genus Dioscorea. Phytochemistry Letters, 2017, 20, 350-355.	1.2	10
31	Modulation of Steroid and Triterpenoid Metabolism in Calendula officinalis Plants and Hairy Root Cultures Exposed to Cadmium Stress. International Journal of Molecular Sciences, 2022, 23, 5640.	4.1	10
32	The mechanism of oleanolic acid monoglycosides transport into vacuoles isolated from Calendula officinalis leaf protoplasts. Plant Physiology and Biochemistry, 2002, 40, 203-209.	5.8	9
33	Increased synthesis of a new oleanane-type saponin in hairy roots of marigold (<i>Calendula) Tj ETQq1 1 0.7843</i>	14 rgBT /C	Overlock 10 T
34	Distribution of Triterpenoids and Steroids in Developing Rugosa Rose (Rosarugosa Thunb.) Accessory Fruit. Molecules, 2021, 26, 5158.	3.8	9
35	Metabolism of [3-3H]oleanolic acid in Calendula officinalis L. roots. Acta Physiologiae Plantarum, 2003, 25, 311-317.	2.1	8
36	Metabolic Modifications in Terpenoid and Steroid Pathways Triggered by Methyl Jasmonate in Taxus $\tilde{A}-$ media Hairy Roots. Plants, 2022, 11, 1120.	3.5	8

#	Article	IF	Citations
37	The metabolism of [3â^3H]oleanolic acid-3-O-mono-[14C]glucoside in isolated cells from Calendula officinalis leaves. Phytochemistry, 1985, 24, 1713-1715.	2.9	6
38	The restructuring of grape berry waxes by calcium changes the surface microbiota. Food Research International, 2021, 150, 110812.	6.2	6
39	Distribution of triterpene acids and their derivatives in organs of cowberry (Vaccinium vitis-idaea L.) plant. Acta Biochimica Polonica, 2007, 54, 733-40.	0.5	6
40	Application of Priming Strategy for Enhanced Paclitaxel Biosynthesis in Taxus $\tilde{A}-$ Media Hairy Root Cultures. Cells, 2022, 11, 2062.	4.1	6
41	GC-MS analysis of steroids and triterpenoids occurring in leaves and tubers of Tamus edulis Lowe. Phytochemistry Letters, 2019, 30, 231-234.	1.2	5
42	Triterpenoid profiles of the leaves of wild and domesticated grapevines. Phytochemistry Letters, 2019, 30, 302-308.	1,2	5
43	The transport of [3-3H]oleanolic acid and its monoglycosides to isolated vacuoles of protoplasts from Calendula officinalis leaves. Phytochemistry, 1992, 31, 2993-2997.	2.9	4
44	The metabolism of [3-3H]oleanolic acid and its monoglycosides in cytoplasm and vacuole of protoplasts isolated from Calendula officinalis leaves. Phytochemistry, 1991, 30, 3909-3912.	2.9	3
45	Calendula officinalis Triterpenoid Saponins Impact the Immune Recognition of Proteins in Parasitic Nematodes. Pathogens, 2021, 10, 296.	2.8	2
46	Biosynthesis of oleanolic acid glycosides in protoplasts isolated from Calendula officinalis L. roots. Acta Physiologiae Plantarum, 2006, 28, 217-223.	2.1	1
47	Analysis of gypsogenin saponins in homeopathic tinctures. Acta Biochimica Polonica, 2007, 54, 853-6.	0.5	1
48	Modifications of Steroid and Triterpenoid Metabolism Triggered by Abiotic Elicitors in Marigold (Calendula officinalis L.) in Vitro Hairy Root Cultures. , 2020, , .		0