
Zhuxing Sun

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9393329/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Thermo-photo coupled catalytic CO2 reforming of methane: A review. Chemical Engineering Journal, 2022, 428, 131222.	12.7	24
2	Direct conversion of methane to oxygenates catalyzed by iron(<scp>III</scp>) chloride in water at near ambient temperature. International Journal of Energy Research, 2021, 45, 2581-2592.	4.5	7
3	1T Phase Transition Metal Dichalcogenides for Hydrogen Evolution Reaction. Electrochemical Energy Reviews, 2021, 4, 194-218.	25.5	65
4	1T/1T′-dominated WSe ₂ with stabilized oxygen dopants for efficient and durable hydrogen evolution. Journal of Materials Chemistry A, 2021, 9, 13490-13495.	10.3	7
5	Photocatalytic conversion of carbon monoxide: from pollutant removal to fuel production. Applied Catalysis B: Environmental, 2021, 295, 120312.	20.2	22
6	Steam reforming of methane: Current states of catalyst design and process upgrading. Renewable and Sustainable Energy Reviews, 2021, 149, 111330.	16.4	120
7	Catalysts for CO ₂ reforming of CH ₄ : a review. Journal of Materials Chemistry A, 2021, 9, 12495-12520.	10.3	93
8	3D Graphene Materials from the Reduction of CO2. Accounts of Materials Research, 2021, 2, 48-58.	11.7	27
9	Photocatalytic conversion of ethane: status and perspective. International Journal of Energy Research, 2020, 44, 708-717.	4.5	4
10	Decorating g-C3N4 with alkalinized Ti3C2 MXene for promoted photocatalytic CO2 reduction performance. Journal of Colloid and Interface Science, 2020, 564, 406-417.	9.4	208
11	g-C ₃ N ₄ -based photoelectrodes for photoelectrochemical water splitting: a review. Journal of Materials Chemistry A, 2020, 8, 21474-21502.	10.3	111
12	3D Graphene Materials: From Understanding to Design and Synthesis Control. Chemical Reviews, 2020, 120, 10336-10453.	47.7	319
13	Ultrafast, Lowâ€Cost, and Mass Production of Highâ€Quality Graphene. Angewandte Chemie - International Edition, 2020, 59, 9232-9234.	13.8	33
14	Ultraschnelle und kostengünstige Produktion von hochwertigem Graphen. Angewandte Chemie, 2020, 132, 9316-9318.	2.0	1
15	Photocatalytic hydrogen production over Rh-loaded TiO2: What is the origin of hydrogen and how to achieve hydrogen production from water?. Applied Catalysis B: Environmental, 2020, 278, 119316.	20.2	73
16	A direct <i>Z</i> -scheme Bi ₂ WO ₆ /NH ₂ -UiO-66 nanocomposite as an efficient visible-light-driven photocatalyst for NO removal. RSC Advances, 2020, 10, 1757-1768.	3.6	34
17	The special route toward conversion of methane to methanol on a fluffy metalâ€free carbon nitride photocatalyst in the presence of H ₂ O ₂ . International Journal of Energy Research, 2020, 44, 2740-2753.	4.5	44
18	How Magical Is Magic-Angle Graphene?. Matter, 2020, 2, 1106-1114.	10.0	21

ZHUXING SUN

#	Article	IF	CITATIONS
19	Enhanced CH4 selectivity in CO2 photocatalytic reduction over carbon quantum dots decorated and oxygen doping g-C3N4. Nano Research, 2019, 12, 2749-2759.	10.4	115
20	Recent progress in visible light photocatalytic conversion of carbon dioxide. Journal of Materials Chemistry A, 2019, 7, 865-887.	10.3	193
21	Novel Binder-Free Three-Dimensional MoS ₂ -Based Electrode for Efficient and Stable Electrocatalytic Hydrogen Evolution. ACS Applied Energy Materials, 2019, 2, 1102-1110.	5.1	42
22	New understanding of crystal control and facet selectivity of titanium dioxide ruling photocatalytic performance. Journal of Materials Chemistry A, 2019, 7, 8156-8166.	10.3	63
23	Photo-assisted methanol steam reforming on solid solution of Cu-Zn-Ti oxide. Chemical Engineering Journal, 2019, 375, 121909.	12.7	50
24	Improved CO2 photocatalytic reduction using a novel 3-component heterojunction. Nano Energy, 2019, 62, 426-433.	16.0	52
25	Novel WS ₂ -Based 3D Electrode with Protecting Scaffold for Efficient and Stable Hydrogen Evolution. Journal of Physical Chemistry C, 2019, 123, 12142-12148.	3.1	15
26	Insights into the Thermo-Photo Catalytic Production of Hydrogen from Water on a Low-Cost NiO _{<i>x</i>} -Loaded TiO ₂ Catalyst. ACS Catalysis, 2019, 9, 5047-5056.	11.2	94
27	Enhanced CO2 photocatalytic reduction performance on alkali and alkaline earth metal ion-exchanged hydrogen titanate nanotubes. Applied Surface Science, 2019, 463, 456-462.	6.1	26
28	g-C3N4 based composite photocatalysts for photocatalytic CO2 reduction. Catalysis Today, 2018, 300, 160-172.	4.4	263
29	Bimodal mesoporous TiO2 supported Pt, Pd and Ru catalysts and their catalytic performance and deactivation mechanism for catalytic combustion of Dichloromethane (CH2Cl2). Applied Catalysis A: General, 2018, 550, 20-27.	4.3	78
30	Synthesis, stabilization and applications of 2-dimensional 1T metallic MoS ₂ . Journal of Materials Chemistry A, 2018, 6, 23932-23977.	10.3	250
31	Insight into the enhanced CO2 photocatalytic reduction performance over hollow-structured Bi-decorated g-C3N4 nanohybrid under visible-light irradiation. Journal of CO2 Utilization, 2018, 28, 126-136.	6.8	75
32	Enhanced CO2 photocatalytic reduction on alkali-decorated graphitic carbon nitride. Applied Catalysis B: Environmental, 2017, 216, 146-155.	20.2	127
33	Enriching CO ₂ Activation Sites on Graphitic Carbon Nitride with Simultaneous Introduction of Electronâ€Transfer Promoters for Superior Photocatalytic CO ₂ â€ŧoâ€Fuel Conversion. Advanced Sustainable Systems, 2017, 1, 1700003.	5.3	65
34	Surprisingly advanced CO2 photocatalytic conversion over thiourea derived g-C3N4 with water vapor while introducing 200–420 nm UV light. Journal of CO2 Utilization, 2016, 14, 143-151.	6.8	54
35	Visible-light CO2 photocatalytic reduction performance of ball-flower-like Bi2WO6 synthesized without organic precursor: Effect of post-calcination and water vapor. Applied Surface Science, 2014, 315, 360-367.	6.1	77
36	One-step synthesis of Clâ^'-doped Pt(IV)/Bi2WO6 with advanced visible-light photocatalytic activity for toluene degradation in air. Journal of Colloid and Interface Science, 2013, 412, 31-38.	9.4	30