
P K Dubey

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9391929/publications.pdf Version: 2024-02-01

D K DUREV

#	Article	IF	CITATIONS
1	Self-Assembled Hierarchical Formation of Conjugated 3D Cobalt Oxide Nanobead–CNT–Graphene Nanostructure Using Microwaves for High-Performance Supercapacitor Electrode. ACS Applied Materials & Interfaces, 2015, 7, 15042-15051.	4.0	156
2	Synthesis of reduced graphene oxide–TiO2 nanoparticle composite systems and its application in hydrogen production. International Journal of Hydrogen Energy, 2014, 39, 16282-16292.	3.8	96
3	Microwave-assisted synthesis of void-induced graphene-wrapped nickel oxide hybrids for supercapacitor applications. RSC Advances, 2016, 6, 26612-26620.	1.7	90
4	Freestanding 3D Graphene–Nickel Encapsulated Nitrogenâ€Rich Aligned Bamboo Like Carbon Nanotubes for Highâ€Performance Supercapacitors with Robust Cycle Stability. Advanced Materials Interfaces, 2015, 2, 1500191.	1.9	82
5	Hydrothermal synthesis of a uniformly dispersed hybrid graphene–TiO ₂ nanostructure for optical and enhanced electrochemical applications. RSC Advances, 2015, 5, 7112-7120.	1.7	60
6	Catalyst-free synthesis of a three-dimensional nanoworm-like gallium oxide–graphene nanosheet hybrid structure with enhanced optical properties. RSC Advances, 2016, 6, 17669-17677.	1.7	58
7	Hydrogen generation by water electrolysis using carbon nanotube anode. International Journal of Hydrogen Energy, 2010, 35, 3945-3950.	3.8	57
8	Pressure-dependent synthesis of high-quality few-layer graphene by plasma-enhanced arc discharge and their thermal stability. Journal of Nanoparticle Research, 2013, 15, 1.	0.8	55
9	Surface modification of aligned TiO2 nanotubes by Cu2O nanoparticles and their enhanced photo electrochemical properties and hydrogen generation application. International Journal of Hydrogen Energy, 2018, 43, 6867-6878.	3.8	46
10	Hydrogen energy in changing environmental scenario: Indian context. International Journal of Hydrogen Energy, 2009, 34, 7358-7367.	3.8	45
11	Clean and Efficient Synthesis of Graphene Nanosheets and Rectangular Aligned-Carbon Nanotubes Bundles Using Green Botanical Hydrocarbon Precursor: Sesame Oil. Science of Advanced Materials, 2014, 6, 76-83.	0.1	26
12	Highly zone-dependent synthesis of different carbon nanostructures using plasma-enhanced arc discharge technique. Journal of Nanoparticle Research, 2015, 17, 1.	0.8	17
13	Synthesis of self-aligned and vertically oriented carbon incorporated titania nanotube for improved photoelectrochemical hydrogen generation. International Journal of Hydrogen Energy, 2017, 42, 4782-4792.	3.8	16
14	Porous and highly conducting cathode material PrBaCo ₂ O _{6â^îî} : bulk and surface studies of synthesis anomalies. Physical Chemistry Chemical Physics, 2019, 21, 14701-14712.	1.3	16
15	Natural dye-based photoelectrode for improvement of solar cell performance. Ionics, 2013, 19, 1179-1183.	1.2	14
16	Influence of synthesis route on structural, optical, and electrical properties of TiO2. Applied Physics A: Materials Science and Processing, 2019, 125, 1.	1.1	14
17	On the Synthesis and Characterizations of TiO2 Nanotubes. Journal of Nanoscience and Nanotechnology, 2009, 9, 5507-5514.	0.9	4
18	Bandgap engineering in TiO2/rGO 1D photonic metasurfaces as broadband solar absorber. Journal of Applied Physics, 2022, 131, 023106.	1.1	3

Р К ДИВЕҮ

#	Article	IF	CITATIONS
19	SYNTHESIS OF TIO2 NANORIBBONS AND ITS APPLICATION IN PHOTOELECTROCHEMICAL WATER SPLITTING FOR HYDROGEN PRODUCTION. International Journal of Nanoscience, 2011, 10, 723-726.	0.4	2
20	Corrosion of AISI 310 and 316 in Molten Hydroxide Under Steam Electrolysis Conditions. ECS Transactions, 2020, 98, 25-34.	0.3	2
21	Formation of TiO2 nano-rods by hydrothermal synthesis method. AIP Conference Proceedings, 2018, , .	0.3	1
22	Stability of ceramic matrix materials in molten hydroxide under oxidizing and reducing conditions. International Journal of Hydrogen Energy, 2021, 46, 14898-14912.	3.8	1
23	Hydroxide melt induced corrosion of Ni at elevated temperatures under steam electrolysis conditions. International Journal of Hydrogen Energy, 2021, 46, 28406-28417.	3.8	0