
Ekaterina S Marchenko

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9391048/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Secondary phases strengthening-toughening effects in the Mo–TiC–La2O3 alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2022, 831, 142271.	2.6	18
2	Study of the Effect of Diamond Nanoparticles on the Structure and Mechanical Properties of the Medical Mg–Ca–Zn Magnesium Alloy. Metals, 2022, 12, 206.	1.0	8
3	Study of macroplastic flow in surface layers of porous titanium nickelide by digital image correlation. AIP Conference Proceedings, 2022, , .	0.3	Ο
4	Combination of Solid and Porous Nitinol Implants in Surgical Treatment of Extensive Post-Excision Thoracic Defects in Cancer Patients. , 2022, , .		0
5	Improved mechanical properties of porous nitinol by aluminum alloying. Journal of Alloys and Compounds, 2022, 918, 165617.	2.8	6
6	In Vitro Bio-Testing Comparative Analysis of NiTi Porous Alloys Modified by Heat Treatment. Metals, 2022, 12, 1006.	1.0	4
7	Influence of Wire Geometry on the Mechanical Behavior of the TiNi Design. Metals, 2022, 12, 1131.	1.0	1
8	Study on tensile, bending, fatigue, and in vivo behavior of porous SHS–TiNi alloy used as a bone substitute. Biomedical Materials (Bristol), 2021, 16, 021001.	1.7	13
9	Comparative study on the high-temperature oxidation resistance of porous and solid TiNi-based alloys. Surface Topography: Metrology and Properties, 2021, 9, 025007.	0.9	1
10	MOCVD of Noble Metal Film Materials for Medical Implants: Microstructure and Biocompatibility of Ir and Au/Ir Coatings on TiNi. Coatings, 2021, 11, 638.	1.2	5
11	Effect of stress-induced martensite ageing on the one-way and two-way shape memory effect of [0 1 1]-oriented TiNiCu crystals under tension. Materials Letters, 2021, 305, 130773.	1.3	5
12	Softening Effects in Biological Tissues and NiTi Knitwear during Cyclic Loading. Materials, 2021, 14, 6256.	1.3	7
13	The Effect of Subsequent Stress-Induced Martensite Aging on the Viscoelastic Properties of Aged NiTiHf Polycrystals. Metals, 2021, 11, 1890.	1.0	0
14	Evaluation of Clinical Performance of TiNi-Based Implants Used in Chest Wall Repair after Resection for Malignant Tumors. Journal of Functional Biomaterials, 2021, 12, 60.	1.8	12
15	Repair of huge thoracic defect combined with hernia after multimodality treatment of breast cancer. Respiratory Medicine Case Reports, 2021, 34, 101558.	0.2	2
16	Portable universal tensile testing machine for studying mechanical properties of superelastic biomaterials. Engineering Research Express, 2021, 3, 045055.	0.8	4
17	Structural, tribological and antibacterial properties of ($\hat{l} \pm + \hat{l}^2$) based ti-alloys for biomedical applications. Journal of Materials Research and Technology, 2020, 9, 14061-14074.	2.6	22
18	Effect of the Size Factor on the Strength and Plastic Properties, the Shape Memory Effect, and the Superelasticity of TiNi-Based Thin Filaments. Russian Metallurgy (Metally), 2020, 2020, 1116-1121.	0.1	1

Ekaterina S Marchenko

#	Article	IF	CITATIONS
19	Gradient crystalline coating on a biomedical TiNi alloy prepared by magnetron sputtering and annealing. Vacuum, 2020, 181, 109652.	1.6	8
20	Influence of Silver Addition on Structure, Martensite Transformations and Mechanical Properties of TiNi–Ag Alloy Wires for Biomedical Application. Materials, 2020, 13, 4721.	1.3	15
21	Viscoelastic Deformation and Fracture of Porous Nickel Titanium after Tension and Cyclic Bending. Russian Physics Journal, 2020, 63, 1243-1248.	0.2	1
22	Superelasticity and two-way shape memory effect in [0 0 1]-oriented TiNiCu single crystals under compression. Materials Letters, 2020, 281, 128646.	1.3	4
23	Martensitic Transformations of the Titanium–Nickelide Alloys with Different Alloying Additions. Technical Physics, 2020, 65, 737-740.	0.2	3
24	Phase formation during air annealing of Ti-Ni-Ti laminate. Surface and Coatings Technology, 2020, 388, 125543.	2.2	7
25	Fertility-Sparing Surgery Using Knitted TiNi Mesh Implants and Sentinel Lymph Nodes: A 10-Year Experience. Journal of Investigative Surgery, 2020, 34, 1-9.	0.6	15
26	Exploring the role of surface modifications of TiNi-based alloys in evaluating in vitro cytocompatibility: a comparative study. Surface Topography: Metrology and Properties, 2020, 8, 045015.	0.9	5
27	Biocompatibility and Clinical Application of Porous TiNi Alloys Made by Self-Propagating High-Temperature Synthesis (SHS). Materials, 2019, 12, 2405.	1.3	39
28	Repair of Orbital Post-Traumatic Wall Defects by Custom-Made TiNi Mesh Endografts. Journal of Functional Biomaterials, 2019, 10, 27.	1.8	16
29	Structural-phase surface composition of porous TiNi produced by SHS. Materials Research Express, 2019, 6, 1165b1.	0.8	3
30	Formation of mineral phases in self-propagating high-temperature synthesis (SHS) of porous TiNi alloy. Materials Research Express, 2019, 6, 056522.	0.8	17
31	Phase equilibrium, structure, mechanical and biocompatible properties of TiNi-based alloy with silver. Materials Research Express, 2019, 6, 066559.	0.8	7
32	Study of the knitted TiNi mesh graft in a rabbit cranioplasty model. Biomedical Physics and Engineering Express, 2019, 5, 027005.	0.6	14
33	Metal-Glass-Ceramic Phases on the Surface of Porous TiNi-Based SHS-Material for Carriers of Cells. Russian Physics Journal, 2019, 61, 1734-1740.	0.2	10
34	Formation of pores and amorphous-nanocrystalline phases in porous TiNi alloys made by self-propagating high-temperature synthesis (SHS). Advanced Powder Technology, 2019, 30, 673-680.	2.0	27
35	Changes in the Stress–Strain States of Subsurface Layers of Steel During Loading. Russian Physics Journal, 2018, 60, 1577-1585.	0.2	13
36	Effect of Alloying of Titanium Nickelide-Based Alloys with Group V Elements (Vanadium, Niobium) on Their Mechanical Properties. Russian Metallurgy (Metally), 2018, 2018, 990-994.	0.1	3

#	Article	IF	CITATIONS
37	Structure feature of ternary state diagrams of Cr-Ti-V and Cr-Mn-V systems. MATEC Web of Conferences, 2018, 243, 00014.	0.1	1
38	The Influence of the Surface Layer on the Combination of Properties of Thin TiNi Alloy Wires. Technical Physics Letters, 2018, 44, 811-813.	0.2	12
39	The Effect of Silver Doping on the Structure and Shape Memory Effect in Biocompatible TiNi Alloys. Technical Physics Letters, 2018, 44, 749-752.	0.2	3
40	Possibilities of using cryotherapy in patients with ocular rosacea. Ophthalmology Journal, 2018, 11, 7-14.	0.1	1
41	Evolution of the reinforced I-beam strain state. MATEC Web of Conferences, 2018, 143, 01017.	0.1	0
42	Study of structural phase transitions in quinary TiNi(MoFeAg)-based alloys. Materials Research Express, 2017, 4, 105702.	0.8	11
43	Effect of an isothermal action on the functional properties and the shape memory effect parameters of a TiNi(Mo, V) alloy. Russian Metallurgy (Metally), 2017, 2017, 267-270.	0.1	1
44	Physical properties of the TiNi-based alloys doped with silver. Materials Today: Proceedings, 2017, 4, 4727-4731.	0.9	4
45	The effect of thermal cycling on the martensitic transformations of (TiNiMoFe)Ag alloys. Technical Physics Letters, 2017, 43, 940-943.	0.2	4
46	The Structure and Properties of Microcrystalline and Submicrocrystalline Titanium Alloy VT1-0 in the Area of the Electron Beam Welding Seam. Russian Physics Journal, 2017, 60, 990-1000.	0.2	10
47	Impact of annealing temperature on martensite transformations and structure of quaternary Ti50Ni47.7Mo0.3V2 alloy. Advanced Materials Letters, 2017, 8, 122-127.	0.3	4
48	The influence of phase hardening on premartensitic states and on martensitic transformation in multicomponent alloys Ti(Ni, Co, Mo) with shape memory effects. Inorganic Materials: Applied Research, 2011, 2, 387-394.	0.1	4
49	Bain strain upon thermoelastic martensitic transformation in intermetallic compounds based on titanium nickelide. Bulletin of the Russian Academy of Sciences: Physics, 2008, 72, 1033-1036.	0.1	0
50	Biocompatibility of Porous SHS-TiNi. Materials Science Forum, 0, 970, 320-327.	0.3	8