Felix Jansen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/939096/publications.pdf

Version: 2024-02-01

48 papers

2,684 citations

304368 22 h-index 223531 46 g-index

48 all docs 48 docs citations

48 times ranked

4053 citing authors

#	Article	IF	CITATIONS
1	Methods for the identification and characterization of extracellular vesicles in cardiovascular studies: from exosomes to microvesicles. Cardiovascular Research, 2023, 119, 45-63.	1.8	44
2	MicroRNA-mediated vascular intercellular communication is altered in chronic kidney disease. Cardiovascular Research, 2022, 118, 316-333.	1.8	21
3	Small blebs, big potential — can extracellular vesicles cure cardiovascular disease?. European Heart Journal, 2022, 43, 95-97.	1.0	4
4	Transverse aortic constriction-induced heart failure leads to increased levels of circulating microparticles. International Journal of Cardiology, 2022, 347, 54-58.	0.8	6
5	Smart devices resulting in big effect: can apps cure heart disease?. European Heart Journal, 2022, 43, 2003-2004.	1.0	2
6	Analysis of nocturnal, hypoxia-induced miRNAs in sleep apnea patients. PLoS ONE, 2022, 17, e0263747.	1.1	1
7	Activation of neutral sphingomyelinase 2 through hyperglycemia contributes to endothelial apoptosis via vesicle-bound intercellular transfer of ceramides. Cellular and Molecular Life Sciences, 2022, 79, 1.	2.4	9
8	Vascular pathologies in chronic kidney disease: pathophysiological mechanisms and novel therapeutic approaches. Journal of Molecular Medicine, 2021, 99, 335-348.	1.7	83
9	Incidence, Risk Factors and Impact on Long-Term Outcome of Postoperative Delirium After Transcatheter Aortic Valve Replacement. Frontiers in Cardiovascular Medicine, 2021, 8, 645724.	1.1	16
10	Large extracellular vesicles in the left atrial appendage in patients with atrial fibrillationâ€"the missing link?. Clinical Research in Cardiology, 2021, , 1.	1.5	2
11	Circulating chaperones in patients with aortic valve stenosis undergoing TAVR: impact of concomitant chronic kidney disease. Translational Research, 2021, 233, 117-126.	2.2	2
12	Inhibition of Rac1 GTPase Decreases Vascular Oxidative Stress, Improves Endothelial Function, and Attenuates Atherosclerosis Development in Mice. Frontiers in Cardiovascular Medicine, 2021, 8, 680775.	1.1	8
13	CAD increases the long noncoding RNA PUNISHER in small extracellular vesicles and regulates endothelial cell function via vesicular shuttling. Molecular Therapy - Nucleic Acids, 2021, 25, 388-405.	2.3	21
14	Smartphone-guided secondary prevention for patients with coronary artery disease. Journal of Rehabilitation and Assistive Technologies Engineering, 2021, 8, 205566832199657.	0.6	3
15	NcRNAs in Vascular and Valvular Intercellular Communication. Frontiers in Molecular Biosciences, 2021, 8, 749681.	1.6	3
16	Editorial: Comorbidities and Aortic Valve Stenosis: Molecular Mechanism, Risk Factors and Novel Therapeutic Options. Frontiers in Cardiovascular Medicine, 2021, 8, 811310.	1.1	0
17	Integrative Multi-Omics Analysis in Calcific Aortic Valve Disease Reveals a Link to the Formation of Amyloid-Like Deposits. Cells, 2020, 9, 2164.	1.8	15
18	AIM2 Stimulation Impairs Reendothelialization and Promotes the Development of Atherosclerosis in Mice. Frontiers in Cardiovascular Medicine, 2020, 7, 582482.	1.1	14

#	Article	IF	CITATIONS
19	MicroRNAs As Master Regulators of Atherosclerosis: From Pathogenesis to Novel Therapeutic Options. Antioxidants and Redox Signaling, 2020, 33, 621-644.	2.5	28
20	Response by Goody and Jansen to Letter Regarding Article, "Aortic Valve Stenosis: From Basic Mechanisms to Novel Therapeutic Targets― Arteriosclerosis, Thrombosis, and Vascular Biology, 2020, 40, e182.	1.1	0
21	Aortic Valve Stenosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 2020, 40, 885-900.	1.1	124
22	The RNAâ€binding protein hnRNPU regulates the sorting of microRNAâ€30câ€5p into large extracellular vesicles. Journal of Extracellular Vesicles, 2020, 9, 1786967.	5.5	56
23	Of Vesicles and Viruses. Circulation Research, 2019, 125, 821-823.	2.0	1
24	Intravascular Lithotripsy in Calcified Coronary Lesions. Circulation: Cardiovascular Interventions, 2019, 12, e008154.	1.4	69
25	Sodium thiocyanate treatment attenuates atherosclerotic plaque formation and improves endothelial regeneration in mice. PLoS ONE, 2019, 14, e0214476.	1.1	18
26	CCN1 regulates cholesterol metabolismâ€"OxLDL enters the matrix. Acta Physiologica, 2019, 225, e13239.	1.8	1
27	Atherosclerotic Conditions Promote the Packaging of Functional MicroRNA-92a-3p Into Endothelial Microvesicles. Circulation Research, 2019, 124, 575-587.	2.0	121
28	Regulatory mechanisms of micro <scp>RNA</scp> sorting into extracellular vesicles. Acta Physiologica, 2018, 222, e13018.	1.8	5
29	Intercellular transfer of miR-126-3p by endothelial microparticles reduces vascular smooth muscle cell proliferation and limits neointima formation by inhibiting LRP6. Journal of Molecular and Cellular Cardiology, 2017, 104, 43-52.	0.9	104
30	Sustained apnea induces endothelial activation. Clinical Cardiology, 2017, 40, 704-709.	0.7	21
31	Extracellular Vesicles in Cardiovascular Disease. Circulation Research, 2017, 120, 1649-1657.	2.0	190
32	Endothelial microparticle-promoted inhibition of vascular remodeling is abrogated under hyperglycaemic conditions. Journal of Molecular and Cellular Cardiology, 2017, 112, 91-94.	0.9	19
33	Kinetics of Circulating MicroRNAs in Response to Cardiac Stress in Patients With Coronary Artery Disease. Journal of the American Heart Association, 2017, 6, .	1.6	29
34	Endothelial- and Immune Cell-Derived Extracellular Vesicles in the Regulation ofÂCardiovascular Health and Disease. JACC Basic To Translational Science, 2017, 2, 790-807.	1.9	104
35	Extracellular Vesicles in Cardiovascular Theranostics. Theranostics, 2017, 7, 4168-4182.	4.6	108
36	Circulating Microparticles Decrease After Cardiac Stress in Patients With Significant Coronary Artery Stenosis. Clinical Cardiology, 2016, 39, 570-577.	0.7	8

#	Article	IF	CITATIONS
37	CD-144 positive endothelial microparticles are increased in patients with systemic inflammatory response syndrome after TAVI. International Journal of Cardiology, 2016, 204, 172-174.	0.8	9
38	Vascular endothelial microparticles-incorporated microRNAs are altered in patients with diabetes mellitus. Cardiovascular Diabetology, 2016, 15, 49.	2.7	116
39	Endothelial microparticles reduce <scp>ICAM</scp> â€1 expression in a micro <scp>RNA</scp> â€222â€dependent mechanism. Journal of Cellular and Molecular Medicine, 2015, 19, 2202-2214.	1.6	102
40	Role and Function of MicroRNAs in Extracellular Vesicles in Cardiovascular Biology. BioMed Research International, 2015, 2015, 1-11.	0.9	55
41	Role, Function and Therapeutic Potential of microRNAs in Vascular Aging. Current Vascular Pharmacology, 2015, 13, 324-330.	0.8	8
42	MicroRNA Expression in Circulating Microvesicles Predicts Cardiovascular Events in Patients With Coronary Artery Disease. Journal of the American Heart Association, 2014, 3, e001249.	1.6	266
43	Effects of High Intensity Training and High Volume Training on Endothelial Microparticles and Angiogenic Growth Factors. PLoS ONE, 2014, 9, e96024.	1.1	62
44	Endothelial Microparticle–Mediated Transfer of MicroRNA-126 Promotes Vascular Endothelial Cell Repair via SPRED1 and Is Abrogated in Glucose-Damaged Endothelial Microparticles. Circulation, 2013, 128, 2026-2038.	1.6	391
45	High glucose condition increases NADPH oxidase activity in endothelial microparticles that promote vascular inflammation. Cardiovascular Research, 2013, 98, 94-106.	1.8	177
46	Activation of Rac-1 and RhoA Contributes to Podocyte Injury in Chronic Kidney Disease. PLoS ONE, 2013, 8, e80328.	1.1	74
47	Endothelial Microparticle Uptake in Target Cells Is Annexin I/Phosphatidylserine Receptor Dependent and Prevents Apoptosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 2012, 32, 1925-1935.	1.1	110
48	Inhibition of the Soluble Epoxide Hydrolase Promotes Albuminuria in Mice with Progressive Renal Disease. PLoS ONE, 2010, 5, e11979.	1.1	54