
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9390939/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Optical recognition of CO and H2 by use of gas-sensitive Au–Co3O4 composite films. Journal of Materials Chemistry, 1997, 7, 1779-1783.	6.7	200
2	Large third-order optical nonlinearities in transition-metal oxides. Nature, 1995, 374, 625-627.	13.7	177
3	Combined effects of small gold particles on the optical gas sensing by transition metal oxide films. Catalysis Today, 1997, 36, 135-141.	2.2	93
4	Optical CO sensitivity of Au–CuO composite film by use of the plasmon absorption change. Sensors and Actuators B: Chemical, 2003, 96, 589-595.	4.0	80
5	Highly Luminescent CdSe/Cd _{<i>x</i>} Zn _{1–<i>x</i>} S Quantum Dots Coated with Thickness-Controlled SiO ₂ Shell through Silanization. Langmuir, 2011, 27, 9535-9540.	1.6	78
6	Optical hydrogen sensitivity of noble metal–tungsten oxide composite films prepared by sputtering deposition. Sensors and Actuators B: Chemical, 2001, 76, 13-17.	4.0	71
7	Recent advances in optochemical sensors for the detection of H2, O2, O3, CO, CO2 and H2O in air. TrAC - Trends in Analytical Chemistry, 2006, 25, 937-948.	5.8	70
8	From Metal–Organic Framework to Intrinsically Fluorescent Carbon Nanodots. Chemistry - A European Journal, 2014, 20, 8279-8282.	1.7	68
9	Humidity-sensitive optical absorption of Co3O4 film. Sensors and Actuators B: Chemical, 1996, 32, 157-160.	4.0	63
10	Highly Luminescent Water-Soluble InP/ZnS Nanocrystals Prepared via Reactive Phase Transfer and Photochemical Processing. Journal of Physical Chemistry C, 2008, 112, 20190-20199.	1.5	58
11	Highly Luminescent CdSe/CdxZn1–xS Quantum Dots with Narrow Spectrum and Widely Tunable Wavelength. Journal of Physical Chemistry C, 2011, 115, 14455-14460.	1.5	57
12	Formation of Luminescent CdTe–Silica Nanoparticles through an Inverse Microemulsion Technique. Chemistry Letters, 2004, 33, 434-435.	0.7	48
13	Optical CO detection by use of CuO/Au composite films. Sensors and Actuators B: Chemical, 1995, 25, 851-853.	4.0	47
14	Encapsulation of emitting CdTe QDs within silica beads to retain initial photoluminescence efficiency. Journal of Colloid and Interface Science, 2007, 316, 420-427.	5.0	47
15	Enhancement in the optical CO sensitivity of NiO film by the deposition of ultrafine gold particles. Journal of the Chemical Society, Faraday Transactions, 1994, 90, 1011.	1.7	44
16	Synthesis of Cd-free water-soluble ZnSe1â^'xTex nanocrystals with high luminescence in the blue region. Journal of Colloid and Interface Science, 2008, 321, 468-476.	5.0	39
17	Third-order nonlinear optical responses of nanoparticulate Co3O4 films. Thin Solid Films, 2004, 446, 271-276.	0.8	32
18	Silica encapsulation of highly luminescent hydrophobic quantum dots by two-step microemulsion method. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2012, 395, 24-31.	2.3	31

#	Article	IF	CITATIONS
19	Highly luminescent water-soluble ZnSe nanocrystals and their incorporation in a glass matrix. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2007, 294, 33-39.	2.3	29
20	Optical ozone-sensing properties of poly(2-chloroaniline), poly(N-methylaniline) and polyaniline films. Sensors and Actuators B: Chemical, 2005, 108, 528-534.	4.0	27
21	Morphology―and Colorâ€Tunable Bright Fibers with High Concentration of CdTe Nanocrystals Assembled through Sol–Gel Reaction. Advanced Materials, 2009, 21, 4016-4019.	11.1	27
22	Formation of two types of highly luminescent SiO2beads impregnated with multiple CdTe QDs. New Journal of Chemistry, 2009, 33, 561-567.	1.4	27
23	Enhancing effect of gold deposition in the optical detection of reducing gases in air by metal oxide thin films. Sensors and Actuators B: Chemical, 1993, 14, 545-546.	4.0	23
24	Large optical CO sensitivity of NO2-pretreated Auî—,NiO composite films. Sensors and Actuators B: Chemical, 1996, 36, 513-516.	4.0	23
25	Electrochromic properties of spin-coated nickel oxide films. Solid State Ionics, 1998, 113-115, 443-447.	1.3	23
26	Various Au Nanoparticle Organizations Fabricated through SiO ₂ Monomer Induced Self-Assembly. Langmuir, 2011, 27, 895-901.	1.6	20
27	Hydrazide and hydrazine reagents as reactive matrices for MALDIâ€MS to detect gaseous aldehydes. Journal of Mass Spectrometry, 2014, 49, 742-749.	0.7	19
28	Development of Technologies for Sensing Ozone in Ambient Air. Analytical Sciences, 2018, 34, 263-267.	0.8	17
29	Optical humidity sensitivity of plasma-oxidized nickel oxide films. Solid State Ionics, 1999, 121, 307-311.	1.3	16
30	Encapsulation of Multiple QDs into SiO ₂ Beads by Reflux without Degrading Initial Photoluminescence Properties. Journal of Physical Chemistry C, 2010, 114, 20962-20967.	1.5	16
31	Optical ozone detection by use of polyaniline film. Solid State Ionics, 2002, 152-153, 819-822.	1.3	15
32	Facile Preparation of Highly Luminescent InP Nanocrystals by a Solvothermal Route. Chemistry Letters, 2008, 37, 856-857.	0.7	15
33	Preparation of SiO2 beads with highly luminescent and magnetic nanocrystals via a modified reverse micelle process. New Journal of Chemistry, 2009, 33, 1457.	1.4	14
34	Synthesis and photoluminescence of bright water-soluble CdSe/ZnS quantum dots overcoated by hybrid organic shell. Materials Letters, 2011, 65, 3146-3149.	1.3	12
35	Highly luminescent SiO2 beads with multiple QDs: Preparation conditions and size distributions. Journal of Colloid and Interface Science, 2011, 354, 455-460.	5.0	11
36	Controlled self-assembly of hydrophobic quantum dots through silanization. Journal of Colloid and Interface Science, 2011, 361, 9-15.	5.0	11

#	Article	IF	CITATIONS
37	2-Hydrazinoquinoline: A Reactive Matrix for Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry to Detect Gaseous Carbonyl Compounds. European Journal of Mass Spectrometry, 2016, 22, 83-90.	0.5	11
38	Cytotoxicity of CdSe-based quantum dots incorporated in glass nanoparticles evaluated using human keratinocyte HaCaT cells. Bioscience, Biotechnology and Biochemistry, 2016, 80, 210-213.	0.6	11
39	Blue-emitting Type-II Semiconductor Nanocrystals with High Efficiency Prepared by Aqueous Method. Chemistry Letters, 2007, 36, 438-439.	0.7	10
40	Optical and Electrical <tex>\$hbox H_2\$</tex> - and <tex>\$hbox NO_2\$</tex> -Sensing Properties of <tex>\$hbox Au/hbox In_rm xhbox O_rm yhbox N_rm z\$</tex> Films. IEEE Sensors Journal, 2004, 4, 232-236.	2.4	9
41	Au/SiO2/QD core/shell/shell nanostructures with plasmonic-enhanced photoluminescence. Journal of Nanoparticle Research, 2012, 14, 1.	0.8	9
42	Sensing of ozone based on its quenching effect on the photoluminescence of CdSe-based core-shell quantum dots. Mikrochimica Acta, 2016, 183, 3019-3024.	2.5	9
43	Efficient NIR-to-Visible Upconversion of Surface-Modified PbS Quantum Dots for Photovoltaic Devices. ACS Applied Nano Materials, 2021, 4, 9680-9688.	2.4	9
44	Reversible photoluminescence sensing of gaseous alkylamines using CdSe-based quantum dots. Sensors and Actuators B: Chemical, 2017, 246, 1074-1079.	4.0	8
45	Near-infrared-to-visible upconversion from 980 nm excitation band by binary solid of PbS quantum dot with directly attached emitter. Journal of Materials Chemistry C, 2022, 10, 4563-4567.	2.7	8
46	Multiple hydrophobic QDs assembled in SiO2 particles using silane coupling agent. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2012, 397, 92-98.	2.3	7
47	Facile synthesis of highly luminescent CdSe/CdxZn1â°'xS quantum dots with widely tunable emission spectra. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2011, 390, 207-211.	2.3	6
48	Hybrid SiO2-coated nanocrystal-based heterostructures: Assembly, morphology transition, and photoluminescence at room temperature. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2011, 384, 289-296.	2.3	6
49	CdSe/Cd1â^'x Zn x S core/shell quantum dots with tunable emission: growth and morphology evolution. Journal of Materials Science, 2013, 48, 651-658.	1.7	6
50	Light wavelengths of LEDs to improve the color discrimination in Ishihara test and Farnsworth Panel Dâ€15 test for deutans. Color Research and Application, 2017, 42, 424-430.	0.8	6
51	ã,»ãf³ã,•ãf³ã,°ææ–™ã«ãŠã⁴ã,<ãfŠãfŽã,µã,ී8ºåŠ¹æžœ. Electrochemistry, 2001, 69, 872-875.	0.6	6
52	Effect of UV light irradiation on the morphology of pyrolyzed Co3O4 films. Solid State Ionics, 2000, 136-137, 1291-1293.	1.3	5
53	Silica-coated CdTe Quantum Dots of Unchanged Size with Intense Photoluminescence at Various Wavelengths. Physics Procedia, 2010, 3, 1553-1555.	1.2	5
54	Photoluminescent Ozone Sensor with Enhanced Sensitivity by Using CdSe/ZnS Quantum Dots Modified with Gold and Platinum. Analytical Sciences, 2020, 36, 989-995.	0.8	5

#	Article	IF	CITATIONS
55	Electroluminescence of Ti- and Ca-doped YAlO3 crystals in the visible region. Materials Letters, 2005, 59, 3941-3944.	1.3	4
56	Blue-Emitting Small Silica Particles Incorporating ZnSe-Based Nanocrystals Prepared by Reverse Micelle Method. Journal of Biomedicine and Biotechnology, 2007, 2007, 1-7.	3.0	4
57	Electroluminescence of Hybrid Self-Organised Fibres Incorporating CdTe Quantum Dots. Australian Journal of Chemistry, 2012, 65, 1257.	0.5	4
58	Nonlinear Optical Responses of Spin-Coated Vanadium Oxide Films. Materials Research Society Symposia Proceedings, 2000, 637, E5.19.1.	0.1	3
59	Aqueous Preparation of Highly Luminescent CdSe/ZnS Nanocrystals through Photochemical Processing. Chemistry Letters, 2011, 40, 258-260.	0.7	3
60	Reversible sensing of nitrogen dioxide using photoluminescent CdSe/ZnS quantum dots and enhanced response by combination with noble metals. Journal of the Ceramic Society of Japan, 2022, 130, 180-186.	0.5	3
61	Comparison of Brightness of Emitting Semiconductor Nanocrystals with That of Rare-Earth Phosphor. Japanese Journal of Applied Physics, 2007, 46, 7545.	0.8	2
62	Electroluminescence of Oxygen-Deficient YAlO3Crystals with Dopants. Japanese Journal of Applied Physics, 2006, 45, 3659-3661.	0.8	1
63	Photoluminescence Properties and Zeta Potential of Water-Dispersible CdTe Nanocrystals. Materials Research Society Symposia Proceedings, 2003, 789, 322.	0.1	0
64	Development of Bright Phosphors Using Glasses Incorporating Semiconductor Nanoparticles. , 2018, , 597-600.		0
65	Development of bright phosphors using glasses incorporating semiconductor nanoparticles. , 2012, , 558-561.		0