Jinho Yoon

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9390753/publications.pdf Version: 2024-02-01

Ιμήρο Υρολ

#	Article	IF	CITATIONS
1	Bionanohybrid composed of metalloprotein/DNA/MoS2/peptides to control the intracellular redox states of living cells and its applicability as a cell-based biomemory device. Biosensors and Bioelectronics, 2022, 196, 113725.	10.1	6
2	Fabrication of MERS-nanovesicle biosensor composed of multi-functional DNA aptamer/graphene-MoS2 nanocomposite based on electrochemical and surface-enhanced Raman spectroscopy. Sensors and Actuators B: Chemical, 2022, 352, 131060.	7.8	34
3	Dynamic Ligand Screening by Magnetic Nanoassembly Modulates Stem Cell Differentiation. Advanced Materials, 2022, 34, e2105460.	21.0	23
4	RNA interference (RNAi)-based plasmonic nanomaterials for cancer diagnosis and therapy. Journal of Controlled Release, 2022, 342, 228-240.	9.9	16
5	Receptor‣evel Proximity and Fastening of Ligands Modulates Stem Cell Differentiation. Advanced Functional Materials, 2022, 32, .	14.9	11
6	Ultrasensitive Electrochemical Detection of Mutated Viral RNAs with Single-Nucleotide Resolution Using a Nanoporous Electrode Array (NPEA). ACS Nano, 2022, 16, 5764-5777.	14.6	20
7	Biomolecular Electron Controller Composed of Nanobiohybrid with Electrically Released Complex for Spatiotemporal Control of Neuronal Differentiation. Small Methods, 2022, 6, 2100912.	8.6	4
8	Electrochemical Cell Chips Based on Functionalized Nanometals. Frontiers in Chemistry, 2021, 9, 671922.	3.6	0
9	Clustered Regularly Interspaced Short Palindromic Repeats-Mediated Amplification-Free Detection of Viral DNAs Using Surface-Enhanced Raman Spectroscopy-Active Nanoarray. ACS Nano, 2021, 15, 13475-13485.	14.6	71
10	Magnetic Control and Realâ€Time Monitoring of Stem Cell Differentiation by the Ligand Nanoassembly. Small, 2021, 17, e2102892.	10.0	22
11	Graphene/MoS2 Nanohybrid for Biosensors. Materials, 2021, 14, 518.	2.9	25
12	Single Functionalized pRNA/Gold Nanoparticle for Ultrasensitive MicroRNA Detection Using Electrochemical Surfaceâ€Enhanced Raman Spectroscopy. Advanced Science, 2020, 7, 1902477.	11.2	53
13	Recent Advances in MXene Nanocomposite-Based Biosensors. Biosensors, 2020, 10, 185.	4.7	57
14	Recent Advances in Biomolecule–Nanomaterial Heterolayer-Based Charge Storage Devices for Bioelectronic Applications. Materials, 2020, 13, 3520.	2.9	3
15	Nanobiohybrid Materialâ€Based Bioelectronic Devices. Biotechnology Journal, 2020, 15, e1900347.	3.5	13
16	Flexible electrochemical biosensors for healthcare monitoring. Journal of Materials Chemistry B, 2020, 8, 7303-7318.	5.8	64
17	Highly Sensitive Biosensors Based on Biomolecules and Functional Nanomaterials Depending on the Types of Nanomaterials: A Perspective Review. Materials, 2020, 13, 299.	2.9	70
18	H2O2 biosensor consisted of hemoglobin-DNA conjugate on nanoporous gold thin film electrode with electrochemical signal enhancement. Nano Convergence, 2019, 6, 1.	12.1	75

Јілно Үоол

#	Article	IF	CITATIONS
19	Fabrication of Troponin I Biosensor Composed of Multi-Functional DNA Structure/Au Nanocrystal Using Electrochemical and Localized Surface Plasmon Resonance Dual-Detection Method. Nanomaterials, 2019, 9, 1000.	4.1	30
20	Flexible HIV-1 Biosensor Based on the Au/MoS2 Nanoparticles/Au Nanolayer on the PET Substrate. Nanomaterials, 2019, 9, 1076.	4.1	34
21	Resistive switching biodevice composed of MoS2-DNA heterolayer on the gold electrode. Applied Surface Science, 2019, 478, 134-141.	6.1	28
22	Multifunctional Nanobiohybrid Material Composed of Ag@Bi ₂ Se ₃ /RNA Three-Way Junction/miRNA/Retinoic Acid for Neuroblastoma Differentiation. ACS Applied Materials & Interfaces, 2019, 11, 8779-8788.	8.0	20
23	Flexible electrochemical glucose biosensor based on GOx/gold/MoS2/gold nanofilm on the polymer electrode. Biosensors and Bioelectronics, 2019, 140, 111343.	10.1	83
24	Development of Bioelectronic Devices Using Bionanohybrid Materials for Biocomputation System. Micromachines, 2019, 10, 347.	2.9	11
25	Electrochemical Dopamine Biosensor Composed of Silver Encapsulated MoS2 Hybrid Nanoparticle. Biotechnology and Bioprocess Engineering, 2019, 24, 135-144.	2.6	41
26	Magnetic Oleosome as a Functional Lipophilic Drug Carrier for Cancer Therapy. ACS Applied Materials & Interfaces, 2018, 10, 9301-9309.	8.0	42
27	Electrochemical Biosensor Composed of Silver Ionâ€Mediated dsDNA on Auâ€Encapsulated Bi ₂ Se ₃ Nanoparticles for the Detection of H ₂ O ₂ Released from Breast Cancer Cells. Small, 2018, 14, e1703970.	10.0	74
28	Spectroelectrochemical detection of microRNA-155 based on functional RNA immobilization onto ITO/GNP nanopattern. Journal of Biotechnology, 2018, 274, 40-46.	3.8	24
29	Nanostructured surfaces for analysis of anticancer drug and cell diagnosis based on electrochemical and SERS tools. Nano Convergence, 2018, 5, 11.	12.1	37
30	Bifunctional Au@Bi ₂ Se ₃ Core–Shell Nanoparticle for Synergetic Therapy by SERSâ€Traceable AntagomiR Delivery and Photothermal Treatment. Small, 2018, 14, e1802934.	10.0	47
31	Electrochemical H2O2 biosensor composed of myoglobin on MoS2 nanoparticle-graphene oxide hybrid structure. Biosensors and Bioelectronics, 2017, 93, 14-20.	10.1	113
32	Electrochemical nitric oxide biosensor based on amine-modified MoS2/graphene oxide/myoglobin hybrid. Colloids and Surfaces B: Biointerfaces, 2017, 159, 729-736.	5.0	38
33	Electrochemical nucleic acid detection based on parallel structural dsDNA/recombinant azurin hybrid. Biosensors and Bioelectronics, 2017, 98, 292-298.	10.1	25
34	Multi-electrochemical signal generation using metalloprotein based on selective surface modification. Biochip Journal, 2017, 11, 322-328.	4.9	3
35	Silver Nanoparticle Modified Electrode Covered by Graphene Oxide for the Enhanced Electrochemical Detection of Dopamine. Sensors, 2017, 17, 2771.	3.8	56
36	Investigation of Hemoglobin/Gold Nanoparticle Heterolayer on Micro-Gap for Electrochemical Biosensor Application. Sensors, 2016, 16, 660.	3.8	9

Jinho Yoon

#	Article	IF	CITATIONS
37	Dual-Level Biomemory Device Composed of Cytochrome c/DNA/Myoglobin Heterolayer. Journal of Nanoscience and Nanotechnology, 2016, 16, 8724-8727.	0.9	1
38	A biomemory chip composed of a myoglobin/CNT heterolayer fabricated by the protein-adsorption-precipitation-crosslinking (PAPC) technique. Colloids and Surfaces B: Biointerfaces, 2015, 136, 853-858.	5.0	6
39	Fusion protein-based biofilm fabrication composed of recombinant azurin–myoglobin for dual-level biomemory application. Applied Surface Science, 2014, 320, 448-454.	6.1	4
40	3D Neural Network Composed of Neurospheroid and Bionanohybrid on Microelectrode Array to Realize the Spatial Input Signal Recognition in Neurospheroid. Small Methods, 0, , 2200127.	8.6	2