Dae-Won Lee

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9390550/publications.pdf

Version: 2024-02-01

394421 434195 1,020 31 19 31 citations h-index g-index papers 32 32 32 1435 citing authors all docs docs citations times ranked

#	Article	IF	CITATIONS
1	Catalytic reduction of nitrate in water over Pd–Cu/TiO2 catalyst: Effect of the strong metal-support interaction (SMSI) on the catalytic activity. Applied Catalysis B: Environmental, 2013, 142-143, 354-361.	20.2	122
2	The catalytic activity of Pd/WOx/ \hat{l}^3 -Al2O3 for hydrodeoxygenation of guaiacol. Applied Catalysis B: Environmental, 2014, 150-151, 438-445.	20.2	122
3	Hydrogenation of CO2 to methanol over Pd–Cu/CeO2 catalysts. Molecular Catalysis, 2017, 434, 146-153.	2.0	92
4	Direct Synthesis of Hydrogen Peroxide from Hydrogen and Oxygen over Mesoporous Silica-Shell-Coated, Palladium-Nanocrystal-Grafted SiO ₂ Nanobeads. ACS Catalysis, 2017, 7, 3039-3048.	11.2	60
5	Shape-dependent catalytic activity of palladium nanoparticles for the direct synthesis of hydrogen peroxide from hydrogen and oxygen. Journal of Molecular Catalysis A, 2014, 391, 48-54.	4.8	58
6	Effect of Pd Particle Size on the Direct Synthesis of Hydrogen Peroxide from Hydrogen and Oxygen over Pd Core–Porous SiO2 Shell Catalysts. Catalysis Letters, 2014, 144, 905-911.	2.6	52
7	Hydrocracking of extra-heavy oil using Cs-exchanged phosphotungstic acid (CsxH3ⰒxPW12O40, x=1–3) catalysts. Fuel, 2014, 126, 263-270.	6.4	45
8	Direct synthesis of hydrogen peroxide from hydrogen and oxygen over single-crystal cubic palladium on silica catalysts. Journal of Molecular Catalysis A, 2014, 383-384, 64-69.	4.8	44
9	Hydrocracking of vacuum residue into lighter fuel oils using nanosheet-structured WS 2 catalyst. Fuel, 2014, 137, 237-244.	6.4	39
10	Catalytic activity of Pd octahedrons/SiO 2 for the direct synthesis of hydrogen peroxide from hydrogen and oxygen. Journal of Molecular Catalysis A, 2016, 420, 88-95.	4.8	39
11	Direct synthesis of hydrogen peroxide from hydrogen and oxygen over a Pd core-silica shell catalyst. Catalysis Communications, 2011, 12, 968-971.	3.3	34
12	Hydrocracking of vacuum residue using NiWS(x) dispersed catalysts. Fuel, 2016, 185, 794-803.	6.4	31
13	The catalytic activity of Sulfided Ni/W/TiO2 (anatase) for the hydrodeoxygenation of Guaiacol. Journal of Molecular Catalysis A, 2014, 392, 241-246.	4.8	26
14	Pd–Cu bimetallic catalysts supported on TiO2–CeO2 mixed oxides for aqueous nitrate reduction by hydrogen. Journal of Molecular Catalysis A, 2014, 392, 308-314.	4.8	26
15	Fe–Zn catalysts for the production of high-calorie synthetic natural gas. Fuel, 2015, 159, 259-268.	6.4	25
16	Preparation of Silica Coated Magnetic Nanoparticles for Bioseparation. Journal of Nanoscience and Nanotechnology, 2018, 18, 1414-1418.	0.9	25
17	Zirconia catalysts (ZrO2 and Na-ZrO2) for the conversion of phenethyl phenyl ether (PPE) in supercritical water. Applied Catalysis A: General, 2015, 493, 149-157.	4.3	24
18	Co-Mn-Ru/Al2O3 catalyst for the production of high-calorific synthetic natural gas. Korean Journal of Chemical Engineering, 2015, 32, 2220-2226.	2.7	21

#	Article	IF	CITATIONS
19	The enhancement of low-temperature combustion of diesel PM through concerted application of FBC and perovskite. Catalysis Today, 2010, 157, 432-435.	4.4	20
20	Heterogeneous Solid Acid Catalysts for Esterification of Free Fatty Acids. Catalysis Surveys From Asia, 2014, 18, 55-74.	2.6	20
21	A yolk–shell structured Pd@void@ZrO2 catalyst for direct synthesis of hydrogen peroxide from hydrogen and oxygen. Journal of Molecular Catalysis A, 2016, 413, 1-6.	4.8	20
22	Gold Nanoparticle-Stabilized, Tyrosine-Rich Peptide Self-Assemblies and Their Catalytic Activities in the Reduction of 4-Nitrophenol. Biomacromolecules, 2018, 19, 4534-4541.	5.4	20
23	Title is missing!. Plasma Chemistry and Plasma Processing, 2003, 23, 519-539.	2.4	14
24	Production of high-calorie synthetic natural gas using copper-impregnated iron catalysts. Journal of Molecular Catalysis A, 2016, 425, 190-198.	4.8	12
25	Au ion-mediated self-assembled tyrosine-rich peptide nanostructure embedded with gold nanoparticle satellites. Journal of Industrial and Engineering Chemistry, 2018, 64, 461-466.	5.8	8
26	Thermal-Corrosion-Free Electrode-Integrated Cell Chip for Promotion of Electrically Stimulated Neurite Outgrowth. Biochip Journal, 2022, 16, 99-110.	4.9	6
27	High catalytic activity of gold nanoparticle-templated, tyrosine-rich peptide self-assemblies for 3,3′,5,5′-tetramethylbenzidine oxidation in the absence of hydrogen peroxide. Reaction Kinetics, Mechanisms and Catalysis, 2019, 128, 349-359.	1.7	5
28	Enhancement of Combustive Removal of Soot at Low Temperatures ($\sim 150~{\rm \^{A}}^{\circ}{\rm C}$) Using Ozone as an Oxidant and Potassium-Substituted Lanthanum Manganite as a Catalyst. Ozone: Science and Engineering, 2021, 43, 461-475.	2.5	5
29	Investigation of the ozone-induced oxidation of soot over LaMnO3 catalyst using O3/O2 temperature-programmed desorption experiments. Reaction Kinetics, Mechanisms and Catalysis, 2021, 133, 259-276.	1.7	2
30	Ozone-induced lean methane oxidation over cobalt ion-exchanged BEA catalyst under dry reaction conditions. Journal of Industrial and Engineering Chemistry, 2022, , .	5.8	2
31	Preface: International symposium on catalytic conversion of energy and resources, 2016. Research on Chemical Intermediates, 2018, 44, 3659-3660.	2.7	1