AnahÃ- DomÃ-nguez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9390474/publications.pdf

Version: 2024-02-01

	706676		1113639	
15	697	14	15	
papers	citations	h-index	g-index	
15	15	15	1154	
all docs	docs citations	times ranked	citing authors	

#	Article	IF	CITATIONS
1	Soil macroinvertebrate communities: A worldâ€wide assessment. Global Ecology and Biogeography, 2022, 31, 1261-1276.	2.7	38
2	Global data on earthworm abundance, biomass, diversity and corresponding environmental properties. Scientific Data, 2021, 8, 136.	2.4	29
3	The Diversification and Intensification of Crop Rotations under No-Till Promote Earthworm Abundance and Biomass. Agronomy, 2020, 10, 919.	1.3	16
4	Global distribution of earthworm diversity. Science, 2019, 366, 480-485.	6.0	248
5	Earthworms contribute to ecosystem process in no-till systems with high crop rotation intensity in Argentina. Acta Oecologica, 2019, 98, 14-24.	0.5	16
6	Soil macrofauna diversity as a key element for building sustainable agriculture in Argentine Pampas. Acta Oecologica, 2018, 92, 102-116.	0.5	22
7	Large-Scale Agricultural Management and Soil Meso- and Macrofauna Conservation in the Argentine Pampas. Sustainability, 2016, 8, 653.	1.6	23
8	Effect of Land Use Changes in Eastern Amazonia on Soil Chemical, Physical, and Biological Attributes. Soil Science, 2016, 181, 133-147.	0.9	7
9	Toxicity of AMPA to the earthworm Eisenia andrei Bouch \tilde{A} ©, 1972 in tropical artificial soil. Scientific Reports, 2016, 6, 19731.	1.6	56
10	Earthworm and Enchytraeid Co-occurrence Pattern in Organic and Conventional Farming. Soil Science, 2016, 181, 148-156.	0.9	17
11	Effect of Good Agricultural Practices under no-till on litter and soil invertebrates in areas with different soil types. Soil and Tillage Research, 2016, 158, 100-109.	2.6	74
12	The adoption of no-till instead of reduced tillage does not improve some soil quality parameters in Argentinean Pampas. Applied Soil Ecology, 2016, 98, 166-176.	2.1	18
13	Organic farming fosters agroecosystem functioning in Argentinian temperate soils: Evidence from litter decomposition and soil fauna. Applied Soil Ecology, 2014, 83, 170-176.	2.1	55
14	Assessment of soil biological degradation using mesofauna. Soil and Tillage Research, 2011, 117, 55-60.	2.6	29
15	Negative effects of no-till on soil macrofauna and litter decomposition in Argentina as compared with natural grasslands. Soil and Tillage Research, 2010, 110, 51-59.	2.6	49