Andrea Baccarini

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/9390432/andrea-baccarini-publications-by-year.pdf

Version: 2024-04-23

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

506 11 24 22 h-index g-index citations papers 808 2.78 10.3 47 L-index avg, IF ext. papers ext. citations

#	Paper	IF	Citations
24	Exploring the coupled ocean and atmosphere system with a data science approach applied to observations from the Antarctic Circumnavigation Expedition. <i>Earth System Dynamics</i> , 2021 , 12, 1295-1.	3 6 98	O
23	Low-Volatility Vapors and New Particle Formation Over the Southern Ocean During the Antarctic Circumnavigation Expedition. <i>Journal of Geophysical Research D: Atmospheres</i> , 2021 , 126, e2021JD0351	2 6 4	3
22	New Insights Into the Composition and Origins of Ultrafine Aerosol in the Summertime High Arctic. <i>Geophysical Research Letters</i> , 2021 , 48, e2021GL094395	4.9	3
21	Sources, Occurrence and Characteristics of Fluorescent Biological Aerosol Particles Measured Over the Pristine Southern Ocean. <i>Journal of Geophysical Research D: Atmospheres</i> , 2021 , 126, e2021JD0348	1 1 4·4	2
20	Determination of the collision rate coefficient between charged iodic acid clusters and iodic acid using the appearance time method. <i>Aerosol Science and Technology</i> , 2021 , 55, 231-242	3.4	8
19	Molecular characterization of ultrafine particles using extractive electrospray time-of-flight mass spectrometry. <i>Environmental Science Atmospheres</i> , 2021 , 1, 434-448		2
18	Role of iodine oxoacids in atmospheric aerosol nucleation. <i>Science</i> , 2021 , 371, 589-595	33.3	31
17	Progress in Unraveling Atmospheric New Particle Formation and Growth Across the Arctic. <i>Geophysical Research Letters</i> , 2021 , 48, e2021GL094198	4.9	2
16	The driving factors of new particle formation and growth in the polluted boundary layer. <i>Atmospheric Chemistry and Physics</i> , 2021 , 21, 14275-14291	6.8	8
15	Insights into the molecular composition of semi-volatile aerosols in the summertime central Arctic Ocean using FIGAERO-CIMS. <i>Environmental Science Atmospheres</i> , 2021 , 1, 161-175		7
14	Rapid growth of new atmospheric particles by nitric acid and ammonia condensation. <i>Nature</i> , 2020 , 581, 184-189	50.4	72
13	Photo-oxidation of Aromatic Hydrocarbons Produces Low-Volatility Organic Compounds. <i>Environmental Science & Environmental Sci</i>	10.3	26
12	Molecular understanding of new-particle formation from alpha-pinene between B 0 C and 25 C 2020 ,		1
11	Enhanced growth rate of atmospheric particles from sulfuric acid. <i>Atmospheric Chemistry and Physics</i> , 2020 , 20, 7359-7372	6.8	21
10	The value of remote marine aerosol measurements for constraining radiative forcing uncertainty. <i>Atmospheric Chemistry and Physics</i> , 2020 , 20, 10063-10072	6.8	11
9	Molecular understanding of the suppression of new-particle formation by isoprene. <i>Atmospheric Chemistry and Physics</i> , 2020 , 20, 11809-11821	6.8	16
8	Molecular understanding of new-particle formation from <i></i>-pinene between B 0 and +25 °C. Atmospheric Chemistry and Physics, 2020 , 20, 9183-9207	6.8	32

LIST OF PUBLICATIONS

7	Molecular understanding of the suppression of new-particle formation by isoprene 2020 ,		1
6	Frequent new particle formation over the high Arctic pack ice by enhanced iodine emissions. <i>Nature Communications</i> , 2020 , 11, 4924	7·4	35
5	Overview of the Antarctic Circumnavigation Expedition: Study of Preindustrial-like Aerosols and Their Climate Effects (ACE-SPACE). <i>Bulletin of the American Meteorological Society</i> , 2019 , 100, 2260-2283	1	35
4	Enhanced growth rate of atmospheric particles from sulfuric acid 2019 ,		1
3	Rapid growth of organic aerosol nanoparticles over a wide tropospheric temperature range. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 9122-9127	5	73
2	Multicomponent new particle formation from sulfuric acid, ammonia, and biogenic vapors. <i>Science Advances</i> , 2018 , 4, eaau5363	ļ.3 _	105
1	The driving factors of new particle formation and growth in the polluted boundary layer		3