
Andrea Baccarini

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9390432/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Rapid growth of new atmospheric particles by nitric acid and ammonia condensation. Nature, 2020, 581, 184-189.	13.7	169
2	Multicomponent new particle formation from sulfuric acid, ammonia, and biogenic vapors. Science Advances, 2018, 4, eaau5363.	4.7	164
3	Rapid growth of organic aerosol nanoparticles over a wide tropospheric temperature range. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 9122-9127.	3.3	118
4	Frequent new particle formation over the high Arctic pack ice by enhanced iodine emissions. Nature Communications, 2020, 11, 4924.	5.8	96
5	Role of iodine oxoacids in atmospheric aerosol nucleation. Science, 2021, 371, 589-595.	6.0	94
6	Overview of the Antarctic Circumnavigation Expedition: Study of Preindustrial-like Aerosols and Their Climate Effects (ACE-SPACE). Bulletin of the American Meteorological Society, 2019, 100, 2260-2283.	1.7	71
7	Molecular understanding of new-particle formation from <i>α</i> -pinene between â^'50 and +25 °C. Atmospheric Chemistry and Physics, 2020, 20, 9183-9207.	1.9	68
8	Photo-oxidation of Aromatic Hydrocarbons Produces Low-Volatility Organic Compounds. Environmental Science & Technology, 2020, 54, 7911-7921.	4.6	66
9	Enhanced growth rate of atmospheric particles from sulfuric acid. Atmospheric Chemistry and Physics, 2020, 20, 7359-7372.	1.9	58
10	Molecular understanding of the suppression of new-particle formation by isoprene. Atmospheric Chemistry and Physics, 2020, 20, 11809-11821.	1.9	49
11	The driving factors of new particle formation and growth in the polluted boundary layer. Atmospheric Chemistry and Physics, 2021, 21, 14275-14291.	1.9	38
12	The value of remote marine aerosol measurements for constraining radiative forcing uncertainty. Atmospheric Chemistry and Physics, 2020, 20, 10063-10072.	1.9	27
13	Determination of the collision rate coefficient between charged iodic acid clusters and iodic acid using the appearance time method. Aerosol Science and Technology, 2021, 55, 231-242.	1.5	18
14	Insights into the molecular composition of semi-volatile aerosols in the summertime central Arctic Ocean using FIGAERO-CIMS. Environmental Science Atmospheres, 2021, 1, 161-175.	0.9	18
15	New Insights Into the Composition and Origins of Ultrafine Aerosol in the Summertime High Arctic. Geophysical Research Letters, 2021, 48, e2021GL094395.	1.5	17
16	Sources, Occurrence and Characteristics of Fluorescent Biological Aerosol Particles Measured Over the Pristine Southern Ocean. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2021JD034811.	1.2	15
17	Progress in Unraveling Atmospheric New Particle Formation and Growth Across the Arctic. Geophysical Research Letters, 2021, 48, e2021GL094198.	1.5	14
18	Lowâ€Volatility Vapors and New Particle Formation Over the Southern Ocean During the Antarctic Circumnavigation Expedition. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2021JD035126.	1.2	14

#	Article	IF	CITATIONS
19	Exploring the coupled ocean and atmosphere system with a data science approach applied to observations from the Antarctic Circumnavigation Expedition. Earth System Dynamics, 2021, 12, 1295-1369.	2.7	12
20	Physical and Chemical Properties of Cloud Droplet Residuals and Aerosol Particles During the Arctic Ocean 2018 Expedition. Journal of Geophysical Research D: Atmospheres, 2022, 127, .	1.2	12
21	Molecular characterization of ultrafine particles using extractive electrospray time-of-flight mass spectrometry. Environmental Science Atmospheres, 2021, 1, 434-448.	0.9	10
22	Survival of newly formed particles in haze conditions. Environmental Science Atmospheres, 2022, 2, 491-499.	0.9	8
23	High-frequency gaseous and particulate chemical characterization using extractive electrospray ionization mass spectrometry (Dual-Phase-EESI-TOF). Atmospheric Measurement Techniques, 2022, 15, 3747-3760.	1.2	7