Michael Kessler

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9389853/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Transcriptomeâ€wide SNPs for <i>Botrychium lunaria</i> ferns enable fineâ€grained analysis of ploidy and population structure. Molecular Ecology Resources, 2022, 22, 254-271.	2.2	3
2	Putting vascular epiphytes on the traits map. Journal of Ecology, 2022, 110, 340-358.	1.9	19
3	Insights into the systematics of Old World taenitidoid ferns (Pteridoideae; Pteridaceae): evidence from phylogeny and micromorphology. Botanical Journal of the Linnean Society, 2022, 200, 165-193.	0.8	3
4	Influence of Increasing Nutrient Availability on Fern and Lycophyte Diversity. American Fern Journal, 2022, 112, .	0.2	1
5	Pteridophyte species richness in the central Himalaya is limited by cold climate extremes at high elevations and rainfall seasonality at low elevations. Ecology and Evolution, 2022, 12, .	0.8	7
6	Nowhere to escape – Diversity and community composition of ferns and lycophytes on the highest mountain in Honduras. Journal of Tropical Ecology, 2021, 37, 72-81.	0.5	8
7	Global patterns and drivers of alpine plant species richness. Global Ecology and Biogeography, 2021, 30, 1218-1231.	2.7	59
8	Limited protection and ongoing loss of tropical cloud forest biodiversity and ecosystems worldwide. Nature Ecology and Evolution, 2021, 5, 854-862.	3.4	51
9	EpiList 1.0: a global checklist of vascular epiphytes. Ecology, 2021, 102, e03326.	1.5	82
10	sPlotOpen – An environmentally balanced, openâ€access, global dataset of vegetation plots. Global Ecology and Biogeography, 2021, 30, 1740-1764.	2.7	49
11	The Taxonomic Distribution of Chlorophyllous Spores in Ferns: An Update. American Fern Journal, 2021, 111, .	0.2	3
12	Patterns and drivers of phylogenetic structure of pteridophytes in China. Global Ecology and Biogeography, 2021, 30, 1835-1846.	2.7	19
13	Phylogenetic diversity of ferns reveals different patterns of niche conservatism and habitat filtering between epiphytic and terrestrial assemblages. Frontiers of Biogeography, 2021, 13, .	0.8	13
14	Slowly but surely: gradual diversification and phenotypic evolution in the hyper-diverse tree fern family Cyatheaceae. Annals of Botany, 2020, 125, 93-103.	1.4	14
15	The Central Andes of Peru: a key area for the conservation of Polylepis forest biodiversity. Journal of Ornithology, 2020, 161, 217-228.	0.5	8
16	Global fern and lycophyte richness explained: How regional and local factors shape plot richness. Journal of Biogeography, 2020, 47, 59-71.	1.4	40
17	The role of hummingbirds in the evolution and diversification of Bromeliaceae: unsupported claims and untested hypotheses. Botanical Journal of the Linnean Society, 2020, 192, 592-608.	0.8	31
18	Guard cell sizes and ploidy levels in Polylepis (Rosaceae). Neotropical Biodiversity, 2020, 6, 178-192.	0.2	3

#	Article	IF	CITATIONS
19	New Guinea has the world's richest island flora. Nature, 2020, 584, 579-583.	13.7	108
20	Taxonomic revaluation of the Polylepis pauta and P. sericea (Rosaceae) from Ecuador . Phytotaxa, 2020, 454, 111-126.	0.1	2
21	Regional species richness determines local species turnover in ferns. Frontiers of Biogeography, 2020, 12, .	0.8	4
22	Diatom Species Richness in Swiss Springs Increases with Habitat Complexity and Elevation. Water (Switzerland), 2020, 12, 449.	1.2	16
23	Different Predictors Shape the Diversity Patterns of Epiphytic and Non-epiphytic Liverworts in Montane Forests of Uganda. Frontiers in Plant Science, 2020, 11, 765.	1.7	3
24	EpIGâ€ÐB: A database of vascular epiphyte assemblages in the Neotropics. Journal of Vegetation Science, 2020, 31, 518-528.	1.1	22
25	Shifts in food plant abundance for flowerâ€visiting insects between 1900 and 2017 in the canton of Zurich, Switzerland. Ecological Applications, 2020, 30, e02138.	1.8	14
26	Latitudinal patterns of species richness and range size of ferns along elevational gradients at the transition from tropics to subtropics. Journal of Biogeography, 2020, 47, 1383-1397.	1.4	19
27	Functional Diversity in Ferns Is Driven by Species Richness Rather Than by Environmental Constraints. Frontiers in Plant Science, 2020, 11, 615723.	1.7	21
28	Spore dispersal of Selaginella denticulata, S. helvetica, and S. selaginoides, and the significance of heterospory in Selaginellacae. American Fern Journal, 2020, 110, 58.	0.2	3
29	Taxonomic Reevaluation of the <i>Polylepis sericea</i> Complex (Rosaceae), with the Description of a New Species. Systematic Botany, 2019, 44, 324-334.	0.2	12
30	Using dendrochronology to trace the impact of the hemiparasite Tristerix chodatianus on Andean Polylepis trees. Plant Ecology, 2019, 220, 873-886.	0.7	9
31	Targeted Capture of Hundreds of Nuclear Genes Unravels Phylogenetic Relationships of the Diverse Neotropical Palm Tribe Geonomateae. Frontiers in Plant Science, 2019, 10, 864.	1.7	40
32	sPlot – A new tool for global vegetation analyses. Journal of Vegetation Science, 2019, 30, 161-186.	1.1	185
33	Pollen analogues are transported across greater distances in beeâ€pollinated than in hummingbirdâ€pollinated species of <i>Justicia</i> (Acanthaceae). Biotropica, 2019, 51, 99-103.	0.8	13
34	Latitudeâ€independent, continentâ€wide consistency in climate–richness relationships in Asian ferns and lycophytes. Journal of Biogeography, 2019, 46, 981-991.	1.4	29
35	Why tree lines are lower on islands—Climatic and biogeographic effects hold the answer. Global Ecology and Biogeography, 2019, 28, 839-850.	2.7	28
36	Phylogenetic classification of the world's tropical forests. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 1837-1842.	3.3	144

#	Article	IF	CITATIONS
37	A new scaly tree fern (Cyathea: Cyatheaceae) from Colombia. Brittonia, 2018, 70, 166-172.	0.8	2
38	Abundance and diversity of flower visitors on wild and cultivated cacao (Theobroma cacao L.) in Bolivia. Agroforestry Systems, 2018, 92, 117-125.	0.9	17
39	End of an enigma: Aenigmopteris belongs in Tectaria (Tectariaceae: Polypodiopsida). Journal of Plant Research, 2018, 131, 67-76.	1.2	10
40	A review of ecological gradient research in the Tropics: identifying research gaps, future directions, and conservation priorities. Biodiversity and Conservation, 2018, 27, 273-285.	1.2	16
41	Elevational Shifts in the Topographic Position of Polylepis Forest Stands in the Andes of Southern Peru. Forests, 2018, 9, 7.	0.9	18
42	Global trait–environment relationships of plant communities. Nature Ecology and Evolution, 2018, 2, 1906-1917.	3.4	397
43	Panâ€ŧropical prediction of forest structure from the largest trees. Global Ecology and Biogeography, 2018, 27, 1366-1383.	2.7	78
44	Richness Patterns of Ferns Along an Elevational Gradient in the Sierra de JuÃirez, Oaxaca, Mexico: a Comparison with Central and South America. American Fern Journal, 2018, 108, 76-94.	0.2	12
45	Influence of elevation and habitat disturbance on the functional diversity of ferns and lycophytes. Plant Ecology and Diversity, 2018, 11, 335-347.	1.0	14
46	Assessing species saturation: conceptual and methodological challenges. Biological Reviews, 2018, 93, 1874-1890.	4.7	10
47	Prodromus of a fern flora for Bolivia. XL. Polypodiaceae. Phytotaxa, 2018, 354, 1.	0.1	11
48	Adiciones a la pteridoflora de Tabasco, México: la importancia del bosque mesófilo de montaña. Acta Botanica Mexicana, 2018, , 7-18.	0.1	5
49	A review of symbiotic fungal endophytes in lycophytes and ferns – a global phylogenetic and ecological perspective. Symbiosis, 2017, 71, 77-89.	1.2	31
50	Conservation value of disturbed and secondary forests for ferns and lycophytes along an elevational gradient in Mexico. Applied Vegetation Science, 2017, 20, 662-672.	0.9	26
51	Molecular ecology studies of species radiations: current research gaps, opportunities and challenges. Molecular Ecology, 2017, 26, 2608-2622.	2.0	34
52	Species richness and vertical distribution of ferns and lycophytes along an elevational gradient in Los Tuxtlas, Veracruz, Mexico. Flora: Morphology, Distribution, Functional Ecology of Plants, 2017, 235, 83-91.	0.6	29
53	Climatologies at high resolution for the earth's land surface areas. Scientific Data, 2017, 4, 170122.	2.4	2,247
54	Biogeography of the Gondwanan tree fern family Dicksoniaceae—A tale of vicariance, dispersal and extinction. Journal of Biogeography, 2017, 44, 2648-2659.	1.4	34

#	Article	IF	CITATIONS
55	Neo―and Paleopolyploidy contribute to the species diversity of <i>Asplenium</i> —the most speciesâ€rich genus of ferns. Journal of Systematics and Evolution, 2017, 55, 353-364.	1.6	51
56	Relict high-Andean ecosystems challenge our concepts of naturalness and human impact. Scientific Reports, 2017, 7, 3334.	1.6	59
57	Environmentally driven extinction and opportunistic origination explain fern diversification patterns. Scientific Reports, 2017, 7, 4831.	1.6	92
58	Prodromus of a fern flora for Bolivia. I. General introduction and key to families. Phytotaxa, 2017, 327, 57.	0.1	43
59	Contrasting biodiversity–ecosystem functioning relationships in phylogenetic and functional diversity. New Phytologist, 2016, 212, 409-420.	3.5	36
60	The world's smallest Campanulaceae: Lysipomia mitsyae sp. nov Taxon, 2016, 65, 305-314.	0.4	2
61	Midpoint attractors and species richness: Modelling the interaction between environmental drivers and geometric constraints. Ecology Letters, 2016, 19, 1009-1022.	3.0	75
62	Delineating probabilistic species pools in ecology and biogeography. Global Ecology and Biogeography, 2016, 25, 489-501.	2.7	57
63	A revised generic classification of vittarioid ferns (Pteridaceae) based on molecular, micromorphological, and geographic data. Taxon, 2016, 65, 708-722.	0.4	27
64	Elevational diversity patterns as an example for evolutionary and ecological dynamics in ferns and lycophytes. Journal of Systematics and Evolution, 2016, 54, 617-625.	1.6	21
65	Predicting bee community responses to land-use changes: Effects of geographic and taxonomic biases. Scientific Reports, 2016, 6, 31153.	1.6	92
66	Eurasian origin, boreotropical migration and transoceanic dispersal in the pantropical fern genus <i>Diplazium</i> (Athyriaceae). Journal of Biogeography, 2015, 42, 1809-1819.	1.4	68
67	Influence of spatial and environmental variables on rattan palm (Arecaceae) assemblage composition in Central Sulawesi, Indonesia. Plant Ecology, 2015, 216, 55-66.	0.7	2
68	Global patterns and drivers of phylogenetic structure in island floras. Scientific Reports, 2015, 5, 12213.	1.6	123
69	The importance of species pool size for community composition. Ecography, 2015, 38, 1243-1253.	2.1	34
70	Pleistocene climatic oscillations rather than recent human disturbance influence genetic diversity in one of the world's highest treeline species. American Journal of Botany, 2015, 102, 1676-1684.	0.8	9
71	Challenges and opportunities for the Bolivian Biodiversity Observation Network. Biodiversity, 2015, 16, 86-98.	0.5	10
72	Morphological and behavioural adaptations to feed on nectar: how feeding ecology determines the diversity and composition of hummingbird assemblages. Journal of Ornithology, 2015, 156, 333-347.	0.5	49

#	Article	IF	CITATIONS
73	Diversity patterns of ferns along elevational gradients in Andean tropical forests. Plant Ecology and Diversity, 2015, 8, 13-24.	1.0	65
74	Elevational patterns of Polylepis tree height (Rosaceae) in the high Andes of Peru: role of human impact and climatic conditions. Frontiers in Plant Science, 2014, 5, 194.	1.7	30
75	Species richness–productivity relationships of tropical terrestrial ferns at regional and local scales. Journal of Ecology, 2014, 102, 1623-1633.	1.9	33
76	Inaccessible ledges as refuges for the natural vegetation of the high Andes. Journal of Vegetation Science, 2014, 25, 1225-1234.	1.1	35
77	Island biogeography from regional to local scales: evidence for a spatially scaled echo pattern of fern diversity in the Southeast Asian archipelago. Journal of Biogeography, 2014, 41, 250-260.	1.4	33
78	Determinants of fern and angiosperm herb community structure in lower montane rainforest in <scp>I</scp> ndonesia. Journal of Vegetation Science, 2014, 25, 1216-1224.	1.1	14
79	Interspecific variation in functional traits in relation to species climatic niche optima in Andean Polylepis (Rosaceae) tree species: evidence for climatic adaptations. Functional Plant Biology, 2014, 41, 301.	1.1	17
80	Evolutionary patterns in the assembly of fern diversity on the oceanic Mascarene Islands. Journal of Biogeography, 2014, 41, 1651-1663.	1.4	32
81	Impact of mycorrhization on the abundance, growth and leaf nutrient status of ferns along a tropical elevational gradient. Oecologia, 2014, 175, 887-900.	0.9	18
82	The world's highest vascular epiphytes found in the Peruvian Andes. Alpine Botany, 2014, 124, 179-185.	1.1	19
83	A transcontinental comparison of the diversity and composition of tropical forest understory herb assemblages. Biodiversity and Conservation, 2013, 22, 755-772.	1.2	29
84	Biodiversity effects on ecosystem functioning change along environmental stress gradients. Ecology Letters, 2013, 16, 568-569.	3.0	108
85	Non-geographic collecting biases in herbarium specimens of Australian daisies (Asteraceae). Biodiversity and Conservation, 2013, 22, 905-919.	1.2	37
86	Effects of altitude and climate in determining elevational plant species richness patterns: A case study from Los Tuxtlas, Mexico. Flora: Morphology, Distribution, Functional Ecology of Plants, 2013, 208, 197-210.	0.6	68
87	Bryophyte cover on trees as proxy for air humidity in the tropics. Ecological Indicators, 2012, 20, 277-281.	2.6	66
88	Can Joint Carbon and Biodiversity Management in Tropical Agroforestry Landscapes Be Optimized?. PLoS ONE, 2012, 7, e47192.	1.1	44
89	Seasonal changes in odour preferences by male euglossine bees (Hymenoptera: Apidae) and their ecological implications. Apidologie, 2012, 43, 212-217.	0.9	11
90	Responses of terrestrial herb assemblages to weeding and fertilization in cacao agroforests in Indonesia. Agroforestry Systems, 2012, 85, 75-83.	0.9	11

#	Article	IF	CITATIONS
91	Historic and recent fragmentation coupled with altitude affect the genetic population structure of one of the world's highest tropical tree line species. Global Ecology and Biogeography, 2012, 21, 455-464.	2.7	43
92	Elevational diversity of terrestrial rainforest herbs: when the whole is less than the sum of its parts. Plant Ecology, 2012, 213, 407-418.	0.7	23
93	Microhabitat partitioning promotes plant diversity in a tropical montane forest. Global Ecology and Biogeography, 2011, 20, 558-569.	2.7	50
94	A global comparative analysis of elevational species richness patterns of ferns. Global Ecology and Biogeography, 2011, 20, 868-880.	2.7	196
95	Costâ€effectiveness of plant and animal biodiversity indicators in tropical forest and agroforest habitats. Journal of Applied Ecology, 2011, 48, 330-339.	1.9	41
96	Multifunctional shade-tree management in tropical agroforestry landscapes - a review. Journal of Applied Ecology, 2011, 48, 619-629.	1.9	527
97	Diverse marsh plant communities are more consistently productive across a range of different environmental conditions through functional complementarity. Journal of Applied Ecology, 2011, 48, 1117-1124.	1.9	26
98	Phylogenetic diversity, trait diversity and niches: species assembly of ferns along a tropical elevational gradient. Journal of Biogeography, 2011, 38, 394-405.	1.4	155
99	The effect of area on local and regional elevational patterns of species richness. Journal of Biogeography, 2011, 38, 1177-1185.	1.4	72
100	Conservation Value of Cacao Agroforestry Systems for Terrestrial Herbaceous Species in Central Sulawesi, Indonesia. Biotropica, 2011, 43, 755-762.	0.8	19
101	The impact of sterile populations on the perception of elevational richness patterns in ferns. Ecography, 2011, 34, 123-131.	2.1	14
102	Accessibility predicts structural variation of Andean Polylepis forests. Biodiversity and Conservation, 2011, 20, 1789-1802.	1.2	32
103	Elevational patterns of species richness and density of rattan palms (Arecaceae: Calamoideae) in Central Sulawesi, Indonesia. Biodiversity and Conservation, 2011, 20, 1987-2005.	1.2	9
104	Diversity and community composition of euglossine bee assemblages (Hymenoptera: Apidae) in western Amazonia. Biodiversity and Conservation, 2011, 20, 2981-3001.	1.2	45
105	Influence of niche characteristics and forest type on fern species richness, abundance and plant size along an elevational gradient in Costa Rica. Plant Ecology, 2011, 212, 1109-1121.	0.7	38
106	Alansmia, a new genus of grammitid ferns (Polypodiaceae) segregated from Terpsichore. Brittonia, 2011, 63, 233-244.	0.8	28
107	A comparison of alpha and beta diversity patterns of ferns, bryophytes and macrolichens in tropical montane forests of southern Ecuador. Biodiversity and Conservation, 2010, 19, 2359-2369.	1.2	42
108	Ecoregional distribution of potentially useful species of Araceae and Bromeliaceae as non-timber forest products in Bolivia. Biodiversity and Conservation, 2010, 19, 2553-2564.	1.2	17

#	Article	IF	CITATIONS
109	Biogeography of ferns. , 2010, , 22-60.		40
110	The role of dispersal ability, climate and spatial separation in shaping biogeographical patterns of phylogenetically distant plant groups in seasonally dry Andean forests of Bolivia. Journal of Biogeography, 2009, 36, 280-290.	1.4	25
111	Effects of environmental heterogeneity on species diversity and composition of terrestrial bryophyte assemblages in tropical montane forests of southern Ecuador. Plant Ecology and Diversity, 2009, 2, 313-321.	1.0	23
112	Modelling tree height to assess climatic conditions at tree lines in the Bolivian Andes. Ecological Modelling, 2007, 207, 223-233.	1.2	35
113	Taxonomical and distributional notes on Polylepis (Rosaceae). Organisms Diversity and Evolution, 2006, 6, 67-69.	0.7	48
114	What drives elevational patterns of diversity? A test of geometric constraints, climate and species pool effects for pteridophytes on an elevational gradient in Costa Rica. Global Ecology and Biogeography, 2006, 15, 358-371.	2.7	220
115	Fern endemism and its correlates: contribution from an elevational transect in Costa Rica. Diversity and Distributions, 2006, 12, 535-545.	1.9	47
116	The World's Highest Forest. American Scientist, 2004, 92, 454.	0.1	13
117	Range size and its ecological correlates among the pteridophytes of Carrasco National Park, Bolivia. Global Ecology and Biogeography, 2002, 11, 89-102.	2.7	35
118	Pteridophyte species richness in Andean forests in Bolivia. Biodiversity and Conservation, 2001, 10, 1473-1495.	1.2	94
119	Title is missing!. Biodiversity and Conservation, 2001, 10, 1897-1921.	1.2	156
120	Title is missing!. Plant Ecology, 2000, 149, 181-193.	0.7	159