Hans Hasse

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9389657/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Poly(oxymethylene) dimethyl ethers as components of tailored diesel fuel: Properties, synthesis and purification concepts. Fuel, 2010, 89, 3315-3319.	6.4	372
2	A Set of Molecular Models for Symmetric Quadrupolar Fluids. Journal of Physical Chemistry B, 2001, 105, 12126-12133.	2.6	346
3	Post combustion CO2 capture by reactive absorption: Pilot plant description and results of systematic studies with MEA. International Journal of Greenhouse Gas Control, 2012, 6, 84-112.	4.6	191
4	Comprehensive study of the vapour–liquid coexistence of the truncated and shifted Lennard–Jones fluid including planar and spherical interface properties. Molecular Physics, 2006, 104, 1509-1527.	1.7	189
5	Prediction of self-diffusion coefficient and shear viscosity of water and its binary mixtures with methanol and ethanol by molecular simulation. Journal of Chemical Physics, 2011, 134, 074508.	3.0	182
6	Online NMR spectroscopic study of species distribution in MEA–H2O–CO2 and DEA–H2O–CO2. Fluid Phase Equilibria, 2008, 263, 131-143.	2.5	178
7	Molecular Dynamics and Experimental Study of Conformation Change of Poly(<i>N</i> -isopropylacrylamide) Hydrogels in Mixtures of Water and Methanol. Journal of Physical Chemistry B, 2012, 116, 5251-5259.	2.6	145
8	Chemical Equilibrium and Reaction Kinetics of the Heterogeneously Catalyzed Formation of Poly(oxymethylene) Dimethyl Ethers from Methylal and Trioxane. Industrial & Engineering Chemistry Research, 2012, 51, 12751-12761.	3.7	144
9	FT-IR spectroscopic investigations of hydrogen bonding in alcohol–hydrocarbon solutions. Fluid Phase Equilibria, 2001, 186, 1-25.	2.5	139
10	Experimental Pressureâ^'Temperature Data on Three- and Four-Phase Equilibria of Fluid, Hydrate, and Ice Phases in the System Carbon Dioxideâ^'Water. Journal of Chemical & Engineering Data, 1999, 44, 901-906.	1.9	135
11	Quantitative high-resolution on-line NMR spectroscopy in reaction and process monitoring. Journal of Magnetic Resonance, 2004, 166, 135-146.	2.1	135
12	1H- and 13C-NMR-Spectroscopic Study of Chemical Equilibria in Solutions of Formaldehyde in Water, Deuterium Oxide, and Methanol. Industrial & Engineering Chemistry Research, 1994, 33, 1022-1029.	3.7	126
13	NMR Spectroscopic and Densimetric Study of Reaction Kinetics of Formaldehyde Polymer Formation in Water, Deuterium Oxide, and Methanol. Industrial & Engineering Chemistry Research, 1995, 34, 440-450.	3.7	124
14	Grand Equilibrium: vapour-liquid equilibria by a new molecular simulation method. Molecular Physics, 2002, 100, 3375-3383.	1.7	124
15	Pilot plant experimental studies of post combustion CO2 capture by reactive absorption with MEA and new solvents. Energy Procedia, 2009, 1, 963-970.	1.8	120
16	Production process for diesel fuel components poly(oxymethylene) dimethyl ethers from methane-based products by hierarchical optimization with varying model depth. Chemical Engineering Research and Design, 2013, 91, 2648-2662.	5.6	111
17	From methanol to the oxygenated diesel fuel poly(oxymethylene) dimethyl ether: An assessment of the production costs. Fuel, 2016, 185, 67-72.	6.4	110
18	A molecular simulation study of shear and bulk viscosity and thermal conductivity of simple real fluids. Fluid Phase Equilibria, 2004, 221, 157-163.	2.5	108

#	Article	IF	CITATIONS
19	<i>ls1 mardyn</i> : The Massively Parallel Molecular Dynamics Code for Large Systems. Journal of Chemical Theory and Computation, 2014, 10, 4455-4464.	5.3	108
20	Prediction of Transport Properties by Molecular Simulation: Methanol and Ethanol and Their Mixture. Journal of Physical Chemistry B, 2008, 112, 16664-16674.	2.6	106
21	Chemical Equilibrium of the Synthesis of Poly(oxymethylene) Dimethyl Ethers from Formaldehyde and Methanol in Aqueous Solutions. Industrial & Engineering Chemistry Research, 2015, 54, 6409-6417.	3.7	106
22	ms2: A molecular simulation tool for thermodynamic properties. Computer Physics Communications, 2011, 182, 2350-2367.	7.5	102
23	Thermophysical Properties of the Lennard-Jones Fluid: Database and Data Assessment. Journal of Chemical Information and Modeling, 2019, 59, 4248-4265.	5.4	101
24	Hydrogen Bonding of Methanol in Supercritical CO ₂ :  Comparison between ¹ H NMR Spectroscopic Data and Molecular Simulation Results. Journal of Physical Chemistry B, 2007, 111, 9871-9878.	2.6	100
25	Unlike Lennard–Jones parameters for vapor–liquid equilibria. Journal of Molecular Liquids, 2007, 135, 170-178.	4.9	100
26	Multi-criteria optimization in chemical process design and decision support by navigation on Pareto sets. Computers and Chemical Engineering, 2014, 60, 354-363.	3.8	100
27	Molecular dynamics and experimental study of conformation change of poly(N-isopropylacrylamide) hydrogels in water. Fluid Phase Equilibria, 2010, 296, 164-172.	2.5	98
28	Octahedral molecular sieves of the type K-OMS-2 with different particle sizes and morphologies: Impact on the catalytic properties in the aerobic partial oxidation of benzyl alcohol. Applied Catalysis A: General, 2009, 355, 42-49.	4.3	97
29	Reaction Kinetics of the Formation of Poly(oxymethylene) Dimethyl Ethers from Formaldehyde and Methanol in Aqueous Solutions. Industrial & Engineering Chemistry Research, 2015, 54, 12553-12560.	3.7	93
30	Fluid dynamics in reactive distillation packing Katapak®-S. Chemical Engineering Science, 1999, 54, 1367-1374.	3.8	92
31	Henry's law constants of methane, nitrogen, oxygen and carbon dioxide in ethanol from 273 to 498 K: Prediction from molecular simulation. Fluid Phase Equilibria, 2005, 233, 134-143.	2.5	91
32	Vapor–liquid equilibria of mixtures containing nitrogen, oxygen, carbon dioxide, and ethane. AICHE Journal, 2003, 49, 2187-2198.	3.6	88
33	A set of molecular models for carbon monoxide and halogenated hydrocarbons. Journal of Chemical Physics, 2003, 119, 11396-11407.	3.0	88
34	High-pressure multiphase behaviour of ternary systems carbon dioxide–water–polar solvent: review and modeling with the Peng–Robinson equation of state. Journal of Supercritical Fluids, 1998, 12, 185-221.	3.2	86
35	CO ₂ Capture for Fossil Fuelâ€Fired Power Plants. Chemical Engineering and Technology, 2011, 34, 163-172.	1.5	85
36	Quantitative NMR Spectroscopy of Complex Liquid Mixtures:Â Methods and Results for Chemical Equilibria in Formaldehydeâ `Waterâ `Methanol at Temperatures up to 383 K. Industrial & Engineering Chemistry Research, 2003, 42, 259-266.	3.7	82

#	Article	IF	CITATIONS
37	Mutual diffusion in the ternary mixture of water + methanol + ethanol and its binary subsystems. Physical Chemistry Chemical Physics, 2013, 15, 3985.	2.8	76
38	Osmotic Virial Coefficients of Aqueous Poly(ethylene glycol) from Laser-Light Scattering and Isopiestic Measurements. Macromolecules, 1995, 28, 3540-3552.	4.8	74
39	Integration of a chemical process model in a power plant modelling tool for the simulation of an amine based CO2 scrubber. Fuel, 2009, 88, 2481-2488.	6.4	74
40	Comprehensive study of the vapour–liquid equilibria of the pure two-centre Lennard–Jones plus pointquadrupole fluid. Fluid Phase Equilibria, 2001, 179, 339-362.	2.5	73
41	Modification of the classical nucleation theory based on molecular simulation data for surface tension, critical nucleus size, and nucleation rate. Physical Review F. 2008, 78, 011603, information of side results on side reactions of the estenification of simil:math	2.1	73
42	altimg= si34.gif display= inline overflow= scroll xmlns:xocs="http://www.elsevier.com/xml/xocs/dtd" xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.elsevier.com/xml/ja/dtd" xmlns:mlns="http://www.elsevier.com/xml/ja/dtd" xmlns:ja="http://www.elsevier.com/xml/ja/dtd" xmlns:mml="http://www.w3.org/1998/Math/Math/ML"	3.8	72
43	Engine Development of a new industrial process for trioxane production. Chemical Engineering Science, 2007, 62, 5613-5620.	3.8	71
44	Molecular model for carbon dioxide optimized to vapor-liquid equilibria. Journal of Chemical Physics, 2010, 132, 234512.	3.0	71
45	Contact Angle of Sessile Drops in Lennard-Jones Systems. Langmuir, 2014, 30, 13606-13614.	3.5	71
46	<mml:math <br="" display="inline" id="mml56" xmlns:mml="http://www.w3.org/1998/Math/MathML">overflow="scroll" altimg="si19.gif"><mml:mi>m</mml:mi><mml:mi>s</mml:mi><mml:mn>2</mml:mn></mml:math> : A molecular simulation tool for thermodynamic properties, release 3.0. Computer Physics	7.5	70
47	Communications, 2017-221-343-351 <pre>cmml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" display="inline" overflow="scroll"><mml:mi>m</mml:mi><mml:mi>s</mml:mi><mml:mi>2: A molecular simulation tool for thermodynamic properties, new version release. Computer Physics Communications, 2014, 185, 3302-3306.</mml:mi></pre>	7.5	67
48	Selection and Pilot Plant Tests of New Absorbents for Post-Combustion Carbon Dioxide Capture. Chemical Engineering Research and Design, 2007, 85, 510-515.	5.6	66
49	The influence of the liquid slab thickness on the planar vapor–liquid interfacial tension. Physica A: Statistical Mechanics and Its Applications, 2013, 392, 2359-2367.	2.6	66
50	Solubility of Carbon Dioxide in Aqueous Solutions of Monoethanolamine in the Low and High Gas Loading Regions. Journal of Chemical & Engineering Data, 2013, 58, 883-895.	1.9	66
51	Phase Equilibrium in Formaldehyde Containing Multicomponent Mixtures:Â Experimental Results for Formaldehyde + Chemistry Research 2006 45 5155-5164	3.7	65
52	MolMod – an open access database of force fields for molecular simulations of fluids. Molecular Simulation, 2019, 45, 806-814.	2.0	65
53	Pilot plant experiments for post combustion carbon dioxide capture by reactive absorption with novel solvents. Energy Procedia, 2011, 4, 1-8.	1.8	62
54	A set of molecular models for alkali and halide ions in aqueous solution. Journal of Chemical Physics, 2012, 136, 084501.	3.0	62

#	Article	IF	CITATIONS
55	Multi-objective optimization using reduced models in conceptual design of a fuel additive production process. Chemical Engineering Science, 2013, 99, 118-126.	3.8	61
56	Conceptual Design of a Novel Process for the Production of Poly(oxymethylene) Dimethyl Ethers from Formaldehyde and Methanol. Industrial & Engineering Chemistry Research, 2017, 56, 11519-11530.	3.7	61
57	Equation of state for the Lennard-Jones truncated and shifted fluid with a cut-off radius of 2.5 σ based on perturbation theory and its applications to interfacial thermodynamics. Molecular Physics, 2018, 116, 2083-2094.	1.7	61
58	Vaporâ^'Liquid Interface of the Lennard-Jones Truncated and Shifted Fluid: Comparison of Molecular Simulation, Density Gradient Theory, and Density Functional Theory. Journal of Physical Chemistry C, 2018, 122, 24705-24715.	3.1	61
59	Methyl Acetate Hydrolysis in a Reactive Divided Wall Column. Chemical Engineering Research and Design, 2007, 85, 149-154.	5.6	59
60	Pilot plant study of post-combustion carbon dioxide capture by reactive absorption: Methodology, comparison of different structured packings, and comprehensive results for monoethanolamine. Chemical Engineering Research and Design, 2011, 89, 1216-1228.	5.6	58
61	Pilot plant study of four new solvents for post combustion carbon dioxide capture by reactive absorption and comparison to MEA. International Journal of Greenhouse Gas Control, 2012, 8, 205-216.	4.6	58
62	Review and comparison of equations of state for the Lennard-Jones fluid. Fluid Phase Equilibria, 2020, 523, 112772.	2.5	58
63	On the application of force fields for predicting a wide variety of properties: Ethylene oxide as an example. Fluid Phase Equilibria, 2008, 274, 16-26.	2.5	56
64	Pilot plant study of two new solvents for post combustion carbon dioxide capture by reactive absorption and comparison to monoethanolamine. Chemical Engineering Science, 2011, 66, 5512-5522.	3.8	56
65	Enrichment at vapour–liquid interfaces of mixtures: establishing a link between nanoscopic and macroscopic properties. International Reviews in Physical Chemistry, 2020, 39, 319-349.	2.3	56
66	Experimental study and model of reaction kinetics of heterogeneously catalyzed methylal synthesis. Chemical Engineering Research and Design, 2012, 90, 696-703.	5.6	55
67	Machine Learning in Thermodynamics: Prediction of Activity Coefficients by Matrix Completion. Journal of Physical Chemistry Letters, 2020, 11, 981-985.	4.6	55
68	Vapor–liquid equilibrium of formaldehyde mixtures: New data and model revision. AICHE Journal, 1996, 42, 1741-1752.	3.6	54
69	Online NMR Spectroscopic Study of Species Distribution in MDEAâ^'H ₂ Oâ^'CO ₂ and MDEAâ^'PIPâ^'H ₂ Oâ^'CO ₂ . Industrial & Engineering Chemistry Research, 2008, 47, 7917-7926.	3.7	54
70	Molecular models for 267 binary mixtures validated by vapor–liquid equilibria: A systematic approach. Fluid Phase Equilibria, 2009, 279, 120-135.	2.5	54
71	Interfacial properties of binary Lennard-Jones mixtures by molecular simulation and density gradient theory. Journal of Chemical Physics, 2019, 150, 174704.	3.0	53
72	Vaporâ^'Liquid and Liquidâ^'Liquid Equilibria in Binary and Ternary Mixtures of Water, Methanol, and Methylal. Journal of Chemical & Engineering Data, 2001, 46, 897-903.	1.9	52

#	Article	IF	CITATIONS
73	Self Diffusion and Binary Maxwell–Stefan Diffusion in Simple Fluids with the Green–Kubo Method. International Journal of Thermophysics, 2004, 25, 175-186.	2.1	52
74	Set of Molecular Models Based on Quantum Mechanical Ab Initio Calculations and Thermodynamic Data. Journal of Physical Chemistry B, 2008, 112, 12710-12721.	2.6	51
75	Comprehensive study of the vapour–liquid equilibria of the pure two-centre Lennard–Jones plus pointdipole fluid. Fluid Phase Equilibria, 2003, 209, 29-53.	2.5	50
76	A short-cut method for assessing absorbents for post-combustion carbon dioxide capture. International Journal of Greenhouse Gas Control, 2011, 5, 413-421.	4.6	50
77	Interfacial tension and adsorption in the binary system ethanol and carbon dioxide: Experiments, molecular simulation and density gradient theory. Fluid Phase Equilibria, 2016, 427, 476-487.	2.5	50
78	Revised vapor-liquid equilibrium model for multicomponent formaldehyde mixtures. AICHE Journal, 1990, 36, 1807-1814.	3.6	49
79	Chemical potential of quadrupolar two-centre Lennard-Jones fluids by gradual insertion. Chemical Physics Letters, 2002, 356, 431-436.	2.6	49
80	Synthesis of n-hexyl acetate by reactive distillation. Chemical Engineering and Processing: Process Intensification, 2004, 43, 397-409.	3.6	48
81	Round Robin Study: Molecular Simulation of Thermodynamic Properties from Models with Internal Degrees of Freedom. Journal of Chemical Theory and Computation, 2017, 13, 4270-4280.	5.3	48
82	Kinetics of oligomerization reactions in formaldehyde solutions: NMR experiments up to 373K and thermodynamically consistent model. Chemical Engineering and Processing: Process Intensification, 2005, 44, 653-660.	3.6	47
83	Prediction of Joule–Thomson inversion curves for pure fluids and one mixture by molecular simulation. Cryogenics, 2005, 45, 253-258.	1.7	47
84	Molecular models of unlike interactions in fluid mixtures. Molecular Simulation, 2005, 31, 215-221.	2.0	47
85	Quantitative NMR spectroscopy of complex technical mixtures using a virtual reference: chemical equilibria and reaction kinetics of formaldehyde–water–1,3,5-trioxane. Analytical and Bioanalytical Chemistry, 2006, 385, 910-917.	3.7	47
86	An optimised molecular model for ammonia. Molecular Physics, 2008, 106, 1039-1046.	1.7	47
87	Modeling and simulation of reactive absorption of CO2 with MEA: Results for four different packings on two different scales. Chemical Engineering Science, 2014, 105, 179-190.	3.8	47
88	Multiâ€Objective Optimization and Decision Support in Process Engineering – Implementation and Application. Chemie-Ingenieur-Technik, 2014, 86, 1065-1072.	0.8	46
89	Excess equimolar radius of liquid drops. Physical Review E, 2012, 85, 031605.	2.1	44
90	Quantitative and qualitative ¹ H, ¹³ C, and ¹⁵ N NMR spectrosco investigation of the urea–formaldehyde resin synthesis. Magnetic Resonance in Chemistry, 2014, 52, 138-162.	opic 1.9	44

#	Article	IF	CITATIONS
91	TweTriS: Twenty trillion-atom simulation. International Journal of High Performance Computing Applications, 2019, 33, 838-854.	3.7	43
92	Vapor—liquid equilibrium of formaldehyde-containing mixtures at temperatures below 320 K. Fluid Phase Equilibria, 1991, 64, 185-199.	2.5	42
93	Thermodynamics of Phase and Chemical Equilibrium in a Strongly Nonideal Esterification System. Journal of Chemical & Engineering Data, 2005, 50, 92-101.	1.9	42
94	Multicriteria optimization of molecular force fields by Pareto approach. Fluid Phase Equilibria, 2014, 373, 100-108.	2.5	42
95	Quantitative on-line high-resolution NMR spectroscopy in process engineering applications. Analytical and Bioanalytical Chemistry, 2003, 375, 1111-1115.	3.7	41
96	Phase Equlibria for Hexyl Acetate Reactive Distillation. Journal of Chemical & Engineering Data, 2005, 50, 1677-1683.	1.9	41
97	Multiphase high-pressure equilibria of carbon dioxide-water-isopropanol. Journal of Supercritical Fluids, 1993, 6, 211-222.	3.2	40
98	Self-Diffusion and Binary Maxwell–Stefan Diffusion Coefficients of Quadrupolar Real Fluids from Molecular Simulation. International Journal of Thermophysics, 2005, 26, 1389-1407.	2.1	40
99	Comparison and validation of simulation codes against sixteen sets of data from four different pilot plants. Energy Procedia, 2009, 1, 1249-1256.	1.8	40
100	Chemical Equilibrium and Reaction Kinetics of Heterogeneously Catalyzedn-Hexyl Acetate Esterification. Industrial & Engineering Chemistry Research, 2006, 45, 4123-4132.	3.7	38
101	Kinetics of the poly(oxymethylene) glycol formation in aqueous formaldehyde solutions. Industrial & Engineering Chemistry Research, 1991, 30, 2195-2200.	3.7	37
102	Thermodynamic Properties of Aqueous Poly(vinylpyrrolidone) Solutions from Laser-Light-Scattering, Membrane Osmometry, and Isopiestic Measurements. Journal of Chemical & Engineering Data, 2003, 48, 689-698.	1.9	37
103	Joule–Thomson inversion curves of mixtures by molecular simulation in comparison to advanced equations of state: Natural gas as an example. Fluid Phase Equilibria, 2007, 258, 34-40.	2.5	37
104	Molecular dispersion energy parameters for alkali and halide ions in aqueous solution. Journal of Chemical Physics, 2014, 140, 044504.	3.0	36
105	Development of an Integrated Reaction–Distillation Process for the Production of Methylal. Industrial & Engineering Chemistry Research, 2017, 56, 575-582.	3.7	36
106	Influence of dispersive long-range interactions on properties of vapour–liquid equilibria and interfaces of binary Lennard-Jones mixtures. Molecular Physics, 2020, 118, e1699185.	1.7	36
107	Molecular interactions at vapor-liquid interfaces: Binary mixtures of simple fluids. Physical Review E, 2020, 101, 012802.	2.1	36
108	Mass transfer through vapour–liquid interfaces: a molecular dynamics simulation study. Molecular Physics, 2021, 119, e1810798.	1.7	36

#	Article	IF	CITATIONS
109	Vapor–liquid equilibria of hydrogen chloride, phosgene, benzene, chlorobenzene, orthoâ€dichlorobenzene, and toluene by molecular simulation. AICHE Journal, 2011, 57, 1043-1060.	3.6	35
110	â^ž/â^ž-Analysis of homogeneous distillation processes. Chemical Engineering Science, 2012, 84, 315-332.	3.8	35
111	Interfacial properties of binary mixtures of simple fluids and their relation to the phase diagram. Physical Chemistry Chemical Physics, 2020, 22, 12544-12564.	2.8	35
112	591 TFLOPS Multi-trillion Particles Simulation on SuperMUC. Lecture Notes in Computer Science, 2013, , 1-12.	1.3	34
113	Parametrization of two-center Lennard-Jones plus point-quadrupole force field models by multicriteria optimization. Fluid Phase Equilibria, 2016, 411, 33-42.	2.5	34
114	Multi•riteria optimization for parameterization of SAFTâ€ŧype equations of state for water. AICHE Journal, 2018, 64, 226-237.	3.6	34
115	Solubility of Formaldehyde and Trioxane in Aqueous Solutions. Journal of Chemical & Engineering Data, 2004, 49, 642-646.	1.9	33
116	Molecular Modeling and Simulation of Vapor–Liquid Equilibria of Ethylene Oxide, Ethylene Glycol, and Water as Well as their Binary Mixtures. Industrial & Engineering Chemistry Research, 2012, 51, 7428-7440.	3.7	33
117	Molecular modelling and simulation of the surface tension of real quadrupolar fluids. Chemical Engineering Science, 2015, 121, 110-117.	3.8	32
118	Interfacial and bulk properties of vapor-liquid equilibria in the system tolueneÂ+Âhydrogen chlorideÂ+Âcarbon dioxide by molecular simulation and density gradient theoryÂ+ÂPC-SAFT. Fluid Phase Equilibria, 2016, 427, 219-230.	2.5	32
119	Thermostatted micro-reactor NMR probe head for monitoring fast reactions. Journal of Magnetic Resonance, 2014, 242, 155-161.	2.1	31
120	Liquid-liquid equilibrium in binary and ternary mixtures containing formaldehyde, water, methanol, methylal, and poly(oxymethylene) dimethyl ethers. Fluid Phase Equilibria, 2016, 425, 127-135.	2.5	31
121	Transport properties of the Lennard-Jones truncated and shifted fluid from non-equilibrium molecular dynamics simulations. Fluid Phase Equilibria, 2019, 482, 38-47.	2.5	31
122	ms2: A molecular simulation tool for thermodynamic properties, release 4.0. Computer Physics Communications, 2021, 262, 107860.	7.5	31
123	Microcalorimetric study of adsorption of human monoclonal antibodies on cation exchange chromatographic materials. Journal of Chromatography A, 2008, 1205, 1-9.	3.7	30
124	Homogeneous nucleation in supersaturated vapors of methane, ethane, and carbon dioxide predicted by brute force molecular dynamics. Journal of Chemical Physics, 2008, 128, 164510.	3.0	30
125	Microcalorimetric study of the adsorption of PEGylated lysozyme on a strong cation exchange resin. Journal of Chromatography A, 2011, 1218, 4720-4726.	3.7	30
126	Thermodynamic and IR spectroscopic studies of solutions with simultaneous association and solvation. Fluid Phase Equilibria, 2003, 208, 23-51.	2.5	29

#	Article	IF	CITATIONS
127	Distillation of formaldehyde containing mixtures: laboratory experiments, equilibrium stage modeling and simulation. Chemical Engineering and Processing: Process Intensification, 2005, 44, 687-694.	3.6	29
128	Thermal properties of the metastable supersaturated vapor of the Lennard-Jones fluid. Journal of Chemical Physics, 2005, 122, 144506.	3.0	29
129	New Experimental Results for the Vaporâ^'Liquid Equilibrium of the Binary System (Trioxane + Water) and the Ternary System (Formaldehyde + Trioxane + Water). Journal of Chemical & Engineering Data, 2005, 50, 1218-1223.	1.9	29
130	On-line 1H NMR spectroscopic investigation of hydrogen bonding in supercritical and near critical CO2–methanol up to 35MPa and 403K. Journal of Supercritical Fluids, 2007, 43, 267-275.	3.2	29
131	A calorimetric study of carbamate formation. Journal of Chemical Thermodynamics, 2011, 43, 664-669.	2.0	29
132	A Set of Molecular Models for Alkaline-Earth Cations in Aqueous Solution. Journal of Physical Chemistry B, 2012, 116, 5448-5457.	2.6	29
133	Hydrogen bonding of ethanol in supercritical mixtures with CO2 by 1H NMR spectroscopy and molecular simulation. Journal of Supercritical Fluids, 2012, 68, 94-103.	3.2	29
134	Design of a Production Process for Poly(oxymethylene) Dimethyl Ethers from Dimethyl Ether and Trioxane. Chemie-Ingenieur-Technik, 2018, 90, 1489-1496.	0.8	29
135	The Influence of Lubrication and the Solid–Fluid Interaction on Thermodynamic Properties in a Nanoscopic Scratching Process. Langmuir, 2019, 35, 16948-16960.	3.5	29
136	Vapor-liquid interfacial properties of the system cyclohexaneÂ+ CO2: Experiments, molecular simulation and density gradient theory. Fluid Phase Equilibria, 2020, 518, 112583.	2.5	29
137	Engineering Molecular Models: Efficient Parameterization Procedure and Cyclohexanol as Case Study. Soft Materials, 2012, 10, 3-25.	1.7	28
138	On-Line NMR Spectroscopic Reaction Kinetic Study of Urea–Formaldehyde Resin Synthesis. Industrial & Engineering Chemistry Research, 2014, 53, 12602-12613.	3.7	28
139	Characterization of Alkylsilane Self-Assembled Monolayers by Molecular Simulation. Langmuir, 2015, 31, 2630-2638.	3.5	28
140	Solvent activity in electrolyte solutions from molecular simulation of the osmotic pressure. Journal of Chemical Physics, 2016, 144, 084112.	3.0	28
141	Multiphase high-pressure equilibria of carbon dioxide-water-acetone. Journal of Supercritical Fluids, 1994, 7, 245-250.	3.2	27
142	Microcalorimetric Study of the Adsorption of PEGylated Lysozyme and PEG on a Mildly Hydrophobic Resin: Influence of Ammonium Sulfate. Langmuir, 2012, 28, 11376-11383.	3.5	27
143	Pilot plant experiments for two new amine solvents for post-combustion carbon dioxide capture. International Journal of Greenhouse Gas Control, 2013, 18, 305-314.	4.6	27
144	Long-range correction for multi-site Lennard-Jones models and planar interfaces. Molecular Physics, 2014, 112, 2227-2234.	1.7	27

#	Article	IF	CITATIONS
145	Removal of carbon dioxide from flue gases with aqueous MEA solution containing ethanol. Chemical Engineering and Processing: Process Intensification, 2014, 75, 81-89.	3.6	27
146	Separation of water from mixtures containing formaldehyde, water, methanol, methylal, and poly(oxymethylene) dimethyl ethers by pervaporation. Journal of Membrane Science, 2018, 564, 806-812.	8.2	27
147	Molecular dynamics and phase field simulations of droplets on surfaces with wettability gradient. Computer Methods in Applied Mechanics and Engineering, 2020, 361, 112773.	6.6	27
148	Temperature Dependence of the Density of Aqueous Alkali Halide Salt Solutions by Experiment and Molecular Simulation. Journal of Chemical & Engineering Data, 2014, 59, 3434-3448.	1.9	26
149	INES – An Interface Between Experiments and Simulation to Support the Development of Robust Process Designs. Chemie-Ingenieur-Technik, 2015, 87, 1810-1825.	0.8	26
150	Reaction Monitoring by Benchtop NMR Spectroscopy Using a Novel Stationary Flow Reactor Setup. Industrial & Engineering Chemistry Research, 2019, 58, 18125-18133.	3.7	26
151	Application of IR-spectroscopy in thermodynamic investigations of associating solutions. Fluid Phase Equilibria, 2003, 205, 195-214.	2.5	25
152	Reaction Kinetics of the Homogeneously Catalyzed Esterification of 1-Butanol with Acetic Acid in a Wide Range of Initial Compositions. Industrial & Engineering Chemistry Research, 2006, 45, 1869-1874.	3.7	25
153	Molecular simulation study of hydrogen bonding mixtures and new molecular models for mono- and dimethylamine. Fluid Phase Equilibria, 2008, 263, 144-159.	2.5	25
154	Contact Angle Dependence on the Fluidâ^'Wall Dispersive Energy. Langmuir, 2010, 26, 10913-10917.	3.5	25
155	Efficient Approach for Calculating Pareto Boundaries under Uncertainties in Chemical Process Design. Industrial & Engineering Chemistry Research, 2017, 56, 12672-12681.	3.7	25
156	Thermodynamic Properties for Applications in Chemical Industry via Classical Force Fields. Topics in Current Chemistry, 2011, 307, 201-249.	4.0	24
157	A thermodynamic model for vanadate in aqueous solution – equilibria and reaction enthalpies. Dalton Transactions, 2013, 42, 2622-2628.	3.3	24
158	Vapor–liquid equilibrium and distillation of mixtures containing formaldehdye and poly(oxymethylene) dimethyl ethers. Chemical Engineering and Processing: Process Intensification, 2018, 131, 116-124.	3.6	24
159	Limiting Activity Coefficients in Alcohol-Containing Organic Solutions from Headspace Gas Chromatography. Journal of Chemical & Engineering Data, 1998, 43, 74-80.	1.9	23
160	Shear viscosity and thermal conductivity of quadrupolar real fluids from molecular simulation. Molecular Simulation, 2005, 31, 787-793.	2.0	23
161	Sensitivity study for the rate-based simulation of the reactive absorption of CO2. Energy Procedia, 2011, 4, 533-540.	1.8	23
162	Prediction of Transport Properties of Liquid Ammonia and Its Binary Mixture with Methanol by Molecular Simulation. International Journal of Thermophysics, 2012, 33, 449-468.	2.1	23

#	Article	IF	CITATIONS
163	Experimental study and modeling of the influence of mixed electrolytes on adsorption of macromolecules on a hydrophobic resin. Journal of Chromatography A, 2013, 1315, 135-144.	3.7	22
164	Physico-chemical properties of solutions of lithium bis(fluorosulfonyl)imide (LiFSI) in dimethyl carbonate, ethylene carbonate, and propylene carbonate. Journal of Power Sources, 2018, 394, 148-159.	7.8	22
165	Predicting Activity Coefficients at Infinite Dilution for Varying Temperatures by Matrix Completion. Industrial & Engineering Chemistry Research, 2021, 60, 14564-14578.	3.7	22
166	Thermodynamic Properties of Aqueous Dextran Solutions from Laser-Light-Scattering, Membrane Osmometry, and Isopiestic Measurements. Journal of Chemical & Engineering Data, 1999, 44, 230-242.	1.9	21
167	Microcalorimetric study of the adsorption of native and mono-PEGylated bovine serum albumin on anion-exchangers. Journal of Chromatography A, 2013, 1277, 58-68.	3.7	21
168	Online ¹ H NMR Spectroscopic Study of the Reaction Kinetics in Mixtures of Acetaldehyde and Water Using a New Microreactor Probe Head. Industrial & Engineering Chemistry Research, 2014, 53, 17589-17596.	3.7	21
169	Activities in Aqueous Solutions of the Alkali Halide Salts from Molecular Simulation. Journal of Chemical & Engineering Data, 2016, 61, 4068-4076.	1.9	21
170	Application of a new micro-reactor 1 H NMR probe head for quantitative analysis of fast esterification reactions. Chemical Engineering Journal, 2016, 306, 413-421.	12.7	21
171	Sub-zero cooling: A novel strategy for high performance cutting. CIRP Annals - Manufacturing Technology, 2018, 67, 95-98.	3.6	21
172	Perspective: Machine Learning of Thermophysical Properties. Fluid Phase Equilibria, 2021, 549, 113206.	2.5	21
173	Molecular model for formic acid adjusted to vapor–liquid equilibria. Chemical Physics Letters, 2007, 435, 268-272.	2.6	20
174	Prediction of ternary vapor–liquid equilibria for 33 systems by molecular simulation. Fluid Phase Equilibria, 2009, 287, 62-69.	2.5	20
175	¹ H―and ¹³ Câ€NMR spectroscopic study of chemical equilibria in the system acetaldehyde + water. AICHE Journal, 2015, 61, 177-187.	3.6	20
176	Solubility of Carbon Dioxide in Poly(oxymethylene) Dimethyl Ethers. Journal of Chemical & Engineering Data, 2017, 62, 4027-4031.	1.9	20
177	Simultaneous description of bulk and interfacial properties of fluids by the Mie potential. Molecular Physics, 2017, 115, 1017-1030.	1.7	20
178	Topological analysis of vapor–liquid equilibrium diagrams for distillation process design. Physical Chemistry Chemical Physics, 2002, 4, 896-908.	2.8	19
179	Thermodynamic models for vapor–liquid equilibria of nitrogen+oxygen+carbon dioxide at low temperatures. Cryogenics, 2009, 49, 72-79.	1.7	19
180	Method for Estimating Activity Coefficients of Target Components in Poorly Specified Mixtures. Industrial & Engineering Chemistry Research, 2018, 57, 7310-7313.	3.7	19

#	Article	IF	CITATIONS
181	Molecular Dynamics Study of Wetting and Adsorption of Binary Mixtures of the Lennard-Jones Truncated and Shifted Fluid on a Planar Wall. Langmuir, 2021, 37, 7405-7419.	3.5	19
182	Monoalkylcarbonate Formation in Methyldiethanolamine–H ₂ O–CO ₂ . Industrial & Engineering Chemistry Research, 2017, 56, 9006-9015.	3.7	19
183	Enthalpy change on vaporization of aqueous and methanolic formaldehyde solutions. AICHE Journal, 1992, 38, 1693-1702.	3.6	18
184	Solvent cleaning and wettability of technical steel and titanium surfaces. Adsorption Science and Technology, 2016, 34, 261-274.	3.2	18
185	Boon and Bane: On the Role of Adjustable Parameters in Simulation Models. Boston Studies in the Philosophy and History of Science, 2017, , 93-115.	0.9	18
186	Automated development of force fields for the calculation of thermodynamic properties: acetonitrile as a case study. Molecular Simulation, 2013, 39, 109-118.	2.0	17
187	Influence of mixed electrolytes and pH on adsorption of bovine serum albumin in hydrophobic interaction chromatography. Journal of Chromatography A, 2017, 1521, 73-79.	3.7	17
188	Thermophysical Properties of Solutions of Iron(III) Nitrate-Nonahydrate in Mixtures of Ethanol and Water. Journal of Chemical & Engineering Data, 2020, 65, 3519-3527.	1.9	17
189	Multiphase high-pressure equilibria of carbon dioxide-water-propionic acid and carbon dioxide-water-i sop ropanol. Journal of Supercritical Fluids, 1996, 9, 19-25.	3.2	16
190	Feasibility and multiplicity in reaction–distillation processes for systems with competing irreversible reactions. Chemical Engineering Science, 2000, 55, 5421-5436.	3.8	16
191	Shear viscosity and thermal conductivity of dipolar real fluids from equilibrium molecular dynamics simulation. Cryogenics, 2006, 46, 711-717.	1.7	16
192	Mastering the Reaction Is the Key to Successful Design of Heterogeneously Catalyzed Reactive Distillation: A Comprehensive Case Study of Hexyl Acetate Synthesis. Industrial & Engineering Chemistry Research, 2008, 47, 6014-6024.	3.7	16
193	Comment on "An optimized potential for carbon dioxide―[J. Chem. Phys. 122, 214507 (2005)]. Journal of Chemical Physics, 2008, 129, 087101.	3.0	16
194	Henry's Law Constant from Molecular Simulation: A Systematic Study of 95 Systems. International Journal of Thermophysics, 2009, 30, 1791-1810.	2.1	16
195	Study of heterogeneously catalysed reactive distillation using the D+R tray—A novel type of laboratory equipment. Chemical Engineering Research and Design, 2011, 89, 1271-1280.	5.6	16
196	Prediction of the overall enthalpy of CO2 absorption in aqueous amine systems from experimentally determined reaction enthalpies. Energy Procedia, 2011, 4, 1542-1549.	1.8	16
197	Molecular simulation study on the solubility of carbon dioxide in mixtures of cyclohexane+cyclohexanone. Fluid Phase Equilibria, 2012, 315, 77-83.	2.5	16
198	Thermodynamic analysis of reaction-distillation processes based on piecewise linear models. Chemical Engineering Science, 2014, 109, 284-295.	3.8	16

#	Article	IF	CITATIONS
199	PFC-NMR and MD Simulation Study of Self-Diffusion Coefficients of Binary and Ternary Mixtures Containing Cyclohexane, Ethanol, Acetone, and Toluene. Journal of Chemical & Engineering Data, 2020, 65, 793-803.	1.9	16
200	Diffusion coefficients at infinite dilution of carbon dioxide and methane in water, ethanol, cyclohexane, toluene, methanol, and acetone: A PFG-NMR and MD simulation study. Journal of Chemical Thermodynamics, 2022, 166, 106691.	2.0	16
201	Surface tension of the two center Lennard-Jones plus quadrupole model fluid. Fluid Phase Equilibria, 2015, 392, 12-18.	2.5	15
202	Molecular simulation of the surface tension of 33 multi-site models for realÂfluids. Journal of Molecular Liquids, 2017, 235, 126-134.	4.9	15
203	Effects of Lubrication on the Friction in Nanometric Machining Processes: A Molecular Dynamics Approach. Applied Mechanics and Materials, 0, 869, 85-93.	0.2	15
204	Heat of Dilution in Aqueous and Methanolic Formaldehyde Solutions. Zeitschrift Fur Elektrotechnik Und Elektrochemie, 1992, 96, 83-96.	0.9	14
205	n-Hexyl acetate pilot plant reactive distillation with modified internals. Chemical Engineering and Processing: Process Intensification, 2005, 44, 677-685.	3.6	14
206	Flexible or rigid molecular models? A study on vapour–liquid equilibrium properties of ammonia. Molecular Physics, 2011, 109, 619-624.	1.7	14
207	Convex envelope method for the determination of fluid phase diagrams. Fluid Phase Equilibria, 2012, 324, 108-116.	2.5	14
208	Surface tension of the two center Lennard-Jones plus point dipole fluid. Journal of Chemical Physics, 2016, 144, 054702.	3.0	14
209	A molecular dynamics simulation scenario for studying solvent-mediated interactions of polymers and application to thermoresponse of poly(N-isopropylacrylamide) in water. Journal of Molecular Liquids, 2018, 268, 294-302.	4.9	14
210	Three-dimensional phase field modeling of inhomogeneous gas-liquid systems using the PeTS equation of state. Journal of Chemical Physics, 2018, 149, 064701.	3.0	14
211	Simultaneous determination of thermal conductivity and shear viscosity using two-gradient non-equilibrium molecular dynamics simulations. Molecular Physics, 2019, 117, 189-199.	1.7	14
212	Digitalization in Thermodynamics. Chemie-Ingenieur-Technik, 2019, 91, 201-214.	0.8	14
213	High-Pressure Phase Equilibria of Carbon Dioxide + 1-Hexanol at 303.15 and 313.15 K. Journal of Chemical & Engineering Data, 2003, 48, 1365-1367.	1.9	13
214	â^ž/â^ž-Analysis of heterogeneous distillation processes. Chemical Engineering Science, 2013, 104, 374-388.	3.8	13
215	Swelling equilibrium of hydrogels of (N-isopropyl acrylamide+anionic and cationic comonomers) in aqueous solutions of sodium chloride: Experimental results and modeling. Fluid Phase Equilibria, 2013, 337, 137-149.	2.5	13
216	Investigation of the reaction of 1,3â€dimethylurea with formaldehyde by quantitative onâ€line NMR spectroscopy: a model for the urea–formaldehyde system. Magnetic Resonance in Chemistry, 2016, 54, 457-476.	1.9	13

#	Article	IF	CITATIONS
217	Studying Fast Reaction Kinetics with Online NMR Spectroscopy. Chemie-Ingenieur-Technik, 2017, 89, 369-378.	0.8	13
218	Investigating the stability of the phase field solution of equilibrium droplet configurations by eigenvalues and eigenvectors. Computational Materials Science, 2018, 141, 185-192.	3.0	13
219	Studying equilibria of polymers in solution by direct molecular dynamics simulations: poly(N-isopropylacrylamide) in water as a test case. European Physical Journal: Special Topics, 2019, 227, 1547-1558.	2.6	13
220	Monoalkylcarbonate formation in the system monoethanolamine–water–carbon dioxide. Fluid Phase Equilibria, 2019, 486, 98-105.	2.5	13
221	Thermophysical Properties of Mixtures of Titanium(IV) Isopropoxide (TTIP) and <i>p</i> -Xylene. Journal of Chemical & amp; Engineering Data, 2020, 65, 869-876.	1.9	13
222	Online process monitoring of a batch distillation by medium field NMR spectroscopy. Chemical Engineering Science, 2020, 219, 115561.	3.8	13
223	Molecular dynamics simulation study of heat transfer across solid–fluid interfaces in a simple model system. Molecular Physics, 2022, 120, .	1.7	13
224	Prediction of Henry's law constants by matrix completion. AICHE Journal, 2022, 68, .	3.6	13
225	Top-down model for dynamic simulation of cold-storage plants. International Journal of Refrigeration, 1996, 19, 10-18.	3.4	12
226	On the difference between a point multipole and an equivalent linear arrangement of point charges in force field models for vapour–liquid equilibria; partial charge based models for 59 real fluids. Molecular Physics, 2011, 109, 1975-1982.	1.7	12
227	Gas Solubility in Binary Liquid Mixtures: Carbon Dioxide in Cyclohexane + Cyclohexanone. Journal of Chemical & Engineering Data, 2011, 56, 2477-2481.	1.9	12
228	¹³ Câ€NMR, ¹³ Câ€ ¹³ C gCOSY, and ESIâ€MS characterization of etherâ€bridged condensation products in <i>N,N</i> ′â€dimethylureaâ€formaldehyde systems. Journal of Applied Polymer Science, 2013, 128, 3957-3963.	2.6	12
229	A novel type of equipment for reactive distillation: Model development, simulation, sensitivity and error analysis. AICHE Journal, 2013, 59, 1533-1543.	3.6	12
230	Reaction Kinetics for Reactive Distillation Using Different Laboratory Reactors. Industrial & Engineering Chemistry Research, 2013, 52, 624-637.	3.7	12
231	Long-range correction for dipolar fluids at planar interfaces. Molecular Physics, 2015, 113, 3750-3756.	1.7	12
232	Comment on "The gas-liquid surface tension of argon: A reconciliation between experiment and simulation―[J. Chem. Phys. 140, 244710 (2014)]. Journal of Chemical Physics, 2015, 142, 107101.	3.0	12
233	Static and Dynamic Wetting Behavior of Drops on Impregnated Structured Walls by Molecular Dynamics Simulation. Journal of Physical Chemistry C, 2017, 121, 12669-12683.	3.1	12
234	Influence of mixed electrolytes on the adsorption of lysozyme, PEG, and PEGylated lysozyme on a hydrophobic interaction chromatography resin. Biotechnology Progress, 2017, 33, 1104-1115.	2.6	12

#	Article	IF	CITATIONS
235	NEAT—NMR Spectroscopy for the Estimation of Activity Coefficients of Target Components in Poorly Specified Mixtures. Industrial & Engineering Chemistry Research, 2019, 58, 9155-9165.	3.7	12
236	A Force Field for Poly(oxymethylene) Dimethyl Ethers (OME <i>n</i>). Journal of Chemical Theory and Computation, 2020, 16, 2517-2528.	5.3	12
237	High Flow-Rate Benchtop NMR Spectroscopy Enabled by Continuous Overhauser DNP. Analytical Chemistry, 2021, 93, 8897-8905.	6.5	12
238	Molecular Dynamics Based Analysis of Nucleation and Surface Energy of Droplets in Supersaturated Vapors of Methane and Ethane. Journal of Heat Transfer, 2009, 131, .	2.1	11
239	On the prediction of transport properties of monomethylamine, dimethylamine, dimethylether and hydrogen chloride by molecular simulation. Fluid Phase Equilibria, 2012, 316, 46-54.	2.5	11
240	Proof of ether-bridged condensation products in UF resins by 2D NMR spectroscopy. Journal of Polymer Research, 2013, 20, 1.	2.4	11
241	Density of Methanolic Alkali Halide Salt Solutions by Experiment and Molecular Simulation. Journal of Chemical & Engineering Data, 2015, 60, 1614-1628.	1.9	11
242	Activity coefficients from molecular simulations using the OPAS method. Journal of Chemical Physics, 2017, 147, 144108.	3.0	11
243	Effects of Lubrication on Friction and Heat Transfer in Machining Processes on the Nanoscale: A Molecular Dynamics Approach. Procedia CIRP, 2018, 67, 296-301.	1.9	11
244	Molecular Dynamics Study of Adsorption of the Lennard-Jones Truncated and Shifted Fluid on Planar Walls. Journal of Chemical & Engineering Data, 2019, 64, 386-394.	1.9	11
245	Vapor–Liquid Equilibria and Chemical Equilibria in the System (Formaldehyde + Water + Isoprenol). Industrial & Engineering Chemistry Research, 2021, 60, 4471-4483.	3.7	11
246	Reaktive Verdampfung formaldehydhaltiger Mischungen und Process Monitoring mit Online-NMR-Spektroskopie. Chemie-Ingenieur-Technik, 2003, 75, 240-244.	0.8	10
247	Rechnergestützter konzeptioneller Entwurf von Destillationsâ€/ Reaktionsprozessen. Chemie-Ingenieur-Technik, 2008, 80, 207-213.	0.8	10
248	Molecular simulation of nano-dispersed fluid phases. Chemical Engineering Science, 2014, 107, 235-244.	3.8	10
249	Swelling behavior of chemically cross-linked poly(N-IPAAm-allylglycine) hydrogels: Effects of NaCl and pH. Fluid Phase Equilibria, 2014, 361, 257-265.	2.5	10
250	NMR spectroscopic study of chemical equilibria in solutions of formaldehyde, water, and butynediol. AICHE Journal, 2017, 63, 4442-4450.	3.6	10
251	Making thermodynamic models of mixtures predictive by machine learning: matrix completion of pair interactions. Chemical Science, 2022, 13, 4854-4862.	7.4	10
252	Pilot plant formaldehyde distillation: experiments and modelling. Chemical Engineering and Processing: Process Intensification, 2005, 44, 671-676.	3.6	9

#	Article	IF	CITATIONS
253	New Equipment for Laboratory Studies of Heterogeneously Catalyzed Reactive Distillation. Chemical Engineering and Technology, 2009, 32, 1313-1317.	1.5	9
254	CO ₂ Capture for Fossil Fuel Fired Power Plants. Chemie-Ingenieur-Technik, 2010, 82, 1639-1653.	0.8	9
255	Fluidâ€phase coexistence for the oxidation of <scp>CO</scp> ₂ expanded cyclohexane: Experiment, molecular simulation, and <scp>COSMO</scp> â€ <scp>SAC</scp> . AICHE Journal, 2013, 59, 2236-2250.	3.6	9
256	Predicting supersaturation by rate-based simulations of reactive absorption. Chemical Engineering Science, 2014, 118, 41-49.	3.8	9
257	On the simultaneous description of hâ€bonding and dipolar interactions with point charges in force field models. AICHE Journal, 2015, 61, 2926-2932.	3.6	9
258	Slope curve method for the analysis of separations in extraction columns of infinite height. Chemical Engineering Science, 2016, 143, 105-113.	3.8	9
259	Molecular simulation study of the CO 2 -N 2 O analogy. Fluid Phase Equilibria, 2017, 442, 44-52.	2.5	9
260	Study of homogeneous bubble nucleation in liquid carbon dioxide by a hybrid approach combining molecular dynamics simulation and density gradient theory. Journal of Chemical Physics, 2018, 148, 124702.	3.0	9
261	Selfâ€Diffusion Coefficients in Solutions of Lithium Bis(fluorosulfonyl)imide with Dimethyl Carbonate and Ethylene Carbonate. Chemie-Ingenieur-Technik, 2019, 91, 1633-1639.	0.8	9
262	Formulation of sub-zero metalworking fluids for cutting processes: Influence of additives. CIRP Journal of Manufacturing Science and Technology, 2020, 31, 25-33.	4.5	9
263	Multi-criteria optimization for parametrizing excess Gibbs energy models. Fluid Phase Equilibria, 2020, 522, 112676.	2.5	9
264	Attribute-based Explanation of Non-Linear Embeddings of High-Dimensional Data. IEEE Transactions on Visualization and Computer Graphics, 2022, 28, 540-550.	4.4	9
265	Automated Methods for Identification and Quantification of Structural Groups from Nuclear Magnetic Resonance Spectra Using Support Vector Classification. Journal of Chemical Information and Modeling, 2021, 61, 143-155.	5.4	9
266	Generalized Chemical Equilibrium Constant of Formaldehyde Oligomerization. Industrial & Engineering Chemistry Research, 2020, 59, 11431-11440.	3.7	9
267	Continuous Three-Phase Distillation. Chemical Engineering Research and Design, 2007, 85, 144-148.	5.6	8
268	The air pressure effect on the homogeneous nucleation of carbon dioxide by molecular simulation. Atmospheric Research, 2011, 101, 519-526.	4.1	8
269	Gas solubility of carbon dioxide and of oxygen in cyclohexanol by experiment and molecular simulation. Journal of Chemical Thermodynamics, 2012, 49, 114-118.	2.0	8
270	Morphological analysis for the development of reliable models for heterogeneously catalysed reactive distillation. Chemical Engineering Science, 2013, 91, 134-145.	3.8	8

#	Article	IF	CITATIONS
271	NMR Spectroscopic Study of the Aldoxane Formation in Aqueous Acetaldehyde Solutions. Industrial & Engineering Chemistry Research, 2014, 53, 8395-8403.	3.7	8
272	Temperature dependence of adsorption of PEGylated lysozyme and pure polyethylene glycol on a hydrophobic resin: Comparison of isothermal titration calorimetry and van't Hoff data. Journal of Chromatography A, 2014, 1356, 188-196.	3.7	8
273	Stage-to-stage calculations of distillation columns by fixed-point iteration and application of the Banach fixed-point theorem. Chemical Engineering Science, 2017, 164, 188-201.	3.8	8
274	In situ measurement of liquid-liquid equilibria by medium field nuclear magnetic resonance. Fluid Phase Equilibria, 2017, 438, 44-52.	2.5	8
275	Electrical conductivity of solutions of lithium bis(fluorosulfonyl)imide in mixed organic solvents and multi-objective solvent optimization for lithium-ion batteries. Journal of Power Sources, 2018, 398, 215-223.	7.8	8
276	Shear-rate dependence of thermodynamic properties of the Lennard-Jones truncated and shifted fluid by molecular dynamics simulations. Physics of Fluids, 2019, 31, .	4.0	8
277	Prediction of the elution profiles of proteins in mixed salt systems in hydrophobic interaction chromatography. Separation and Purification Technology, 2020, 233, 116006.	7.9	8
278	Thermophysical Properties of Solutions of Iron(III) Nitrate Nonahydrate in Mixtures of 1-Propanol and Water. Journal of Chemical & Engineering Data, 2020, 65, 5413-5420.	1.9	8
279	Adsorption and reaction layers when turning AISI 304 using various cooling strategies. Procedia CIRP, 2020, 87, 125-130.	1.9	8
280	Prediction of flow effects in quantitative NMR measurements. Journal of Magnetic Resonance, 2020, 312, 106683.	2.1	8
281	Pareto-Navigation in Chemical Engineering. Computer Aided Chemical Engineering, 2011, 29, 422-426.	0.5	8
282	Separation efficiency of thin-film evaporators: Experiments with water–ethylene glycol and methanol–water and stage-based modeling. Chemical Engineering and Processing: Process Intensification, 2008, 47, 209-214.	3.6	7
283	Simulation of Surface Wetting by Droplets Using a Phase Field Model. Proceedings in Applied Mathematics and Mechanics, 2016, 16, 519-520.	0.2	7
284	Thermodynamic Study of a Complex System for Carbon Capture: Butyltriacetonediamine + Water + Carbon Dioxide. Journal of Chemical & Engineering Data, 2016, 61, 3814-3826.	1.9	7
285	Reactive Distillation in a Dividingâ€Wall Column: Model Development, Simulation, and Error Analysis. Chemie-Ingenieur-Technik, 2017, 89, 1315-1324.	0.8	7
286	Surface Wetting with Droplets: A Phase Field Approach. Proceedings in Applied Mathematics and Mechanics, 2017, 17, 501-502.	0.2	7
287	SkaSim – Scalable HPC Software for Molecular Simulation in the Chemical Industry. Chemie-Ingenieur-Technik, 2018, 90, 295-306.	0.8	7
288	Mathematical modeling of adsorption isotherms in mixed salt systems in hydrophobic interaction chromatography. Biotechnology Progress, 2018, 34, 1251-1260.	2.6	7

#	Article	lF	CITATIONS
289	Recovery of Furfural and Acetic Acid from Wood Hydrolysates in Biotechnological Downstream Processing. Chemical Engineering and Technology, 2018, 41, 2331-2336.	1.5	7
290	Thermal, caloric and transport properties of the Lennard–Jones truncated and shifted fluid in the adsorbed layers at dispersive solid walls. Molecular Physics, 2020, 118, e1669838.	1.7	7
291	Experimental Study of the Influence of the Adsorbate Layer Composition on the Wetting of Different Substrates with Water. Adsorption Science and Technology, 2021, 2021, .	3.2	7
292	Turning of AISI 4140 (42CrMo4): A Novel Sub-zero Cooling Approach. , 2019, , 313-323.		7
293	Synthesis of Methylal and Poly(oxymethylene) Dimethyl Ethers from Dimethyl Ether and Trioxane. Industrial & Engineering Chemistry Research, 2022, 61, 7810-7822.	3.7	7
294	Solubility of Carbon Dioxide in Activated Potash Solutions in the Low and High Gas Loading Regions. Industrial & Engineering Chemistry Research, 2013, 52, 13477-13489.	3.7	6
295	Fully Automated Weighing of Liquid Substances with a Laboratory Robot. Chemical Engineering and Technology, 2014, 37, 168-172.	1.5	6
296	Equilibrium swelling of some poly(N-IPAAm-sulfobetaine) hydrogels in water and in aqueous solutions of a single salt. Fluid Phase Equilibria, 2014, 367, 194-203.	2.5	6
297	Decision Support by Multicriteria Optimization in Process Development: An Integrated Approach for Robust Planning and Design of Plant Experiments. Computer Aided Chemical Engineering, 2015, 37, 2063-2068.	0.5	6
298	Modeling, simulation and analysis of a process for the production of crotonaldehyde. Chemical Engineering and Processing: Process Intensification, 2016, 101, 101-111.	3.6	6
299	Partial molar volume of NaCl and CsCl in mixtures of water and methanol by experiment and molecular simulation. Fluid Phase Equilibria, 2018, 458, 30-39.	2.5	6
300	Vapor-liquid equilibrium in the ternary systems acetic acidÂ+ waterÂ+ (xylose or glucose). Fluid Phase Equilibria, 2018, 473, 323-329.	2.5	6
301	Application of NEAT for determining the composition dependence of activity coefficients in poorly specified mixtures. Chemical Engineering Science, 2019, 208, 115161.	3.8	6
302	Application of NEAT for the simulation of liquid–liquid extraction processes with poorly specified feeds. AICHE Journal, 2020, 66, e16826.	3.6	6
303	Two Simple and Highly Efficient Variants of the Griffithâ€Ley Oxidation of Alcohols. ChemCatChem, 2020, 12, 3919-3928.	3.7	6
304	Reproducibility of atomistic friction computer experiments: a molecular dynamics simulation study. Molecular Simulation, 2021, 47, 1509-1521.	2.0	6
305	Influence of pH value and salts on the adsorption of lysozyme in mixedâ€mode chromatography. Engineering in Life Sciences, 2021, 21, 753-768.	3.6	6
306	On the effort of approaching pure components and azeotropes in distillation. Chemical Engineering Science, 2015, 127, 253-259.	3.8	5

#	Article	IF	CITATIONS
307	Density of ethanolic alkali halide salt solutions by experiment and molecular simulation. Fluid Phase Equilibria, 2016, 408, 141-150.	2.5	5
308	Short-cut method for assessing solvents for gas cleaning by reactive absorption. Chemical Engineering Research and Design, 2020, 153, 757-767.	5.6	5
309	Estimating activity coefficients of target components in poorly specified mixtures with NMR spectroscopy and COSMO-RS. Fluid Phase Equilibria, 2020, 516, 112604.	2.5	5
310	Sub-zero metalworking fluids for high performance cutting of difficult to cut materials. Procedia CIRP, 2021, 101, 342-345.	1.9	5
311	Adsorption of Binary Mixtures of the Lennard-Jones Truncated and Shifted Fluid on Planar Walls. Journal of Chemical & Engineering Data, 2021, 66, 3722-3734.	1.9	5
312	Computational Molecular Engineering as an Emerging Technology in Process Engineering. IT - Information Technology, 2013, 55, 97-101.	0.9	5
313	Kryogener Kühlschmierstoff auf der Basis von Ethylenglykol. ZWF Zeitschrift Fuer Wirtschaftlichen Fabrikbetrieb, 2016, 111, 444-448.	0.3	5
314	Solid–Liquid Equilibria and Kinetics of the Solid Formation in Binary and Ternary Mixtures Containing (Formaldehyde + Water + Methanol). Industrial & Engineering Chemistry Research, 2022, 61, 1871-1884.	3.7	5
315	Transport properties of anisotropic polar fluids. Fluid Phase Equilibria, 2006, 249, 131-139.	2.5	4
316	Transport properties of anisotropic polar fluids. Fluid Phase Equilibria, 2006, 249, 120-130.	2.5	4
317	INES – Interface between Experiments and Simulation. Computer Aided Chemical Engineering, 2014, , 1159-1164.	0.5	4
318	Equilibrium swelling of (N-isopropyl acrylamide +hydrophobic comonomer) gels in aqueous solutions of ethanol. Fluid Phase Equilibria, 2014, 382, 235-243.	2.5	4
319	Carbonate complexes of vanadate. Polyhedron, 2015, 95, 81-85.	2.2	4
320	Thermal and caloric properties of fluids from non-equilibrium molecular dynamics simulations using the two-gradient method. Journal of Chemical Physics, 2018, 149, 244106.	3.0	4
321	NMR spectroscopic method for studying homogenous liquid phase reaction kinetics in systems used in reactive gas absorption and application to monoethanolamine–water–carbon dioxide. Chemical Engineering Journal, 2019, 374, 1127-1137.	12.7	4
322	NMR Spectroscopic Study of Chemical Reactions in Mixtures Containing Oleic Acid, Formic Acid, and Formoxystearic Acid. Industrial & Engineering Chemistry Research, 2019, 58, 5622-5630.	3.7	4
323	Vapor-liquid equilibrium of mixtures containing formaldehyde, water, and butynediol. Fluid Phase Equilibria, 2019, 490, 101-106.	2.5	4
324	Physico-Chemical Properties of LiFSI Solutions I. LiFSI with Valeronitrile, Dichloromethane, 1,2-Dichloroethane, and 1,2-Dichlorobenzene. Journal of Chemical & Engineering Data, 2019, 64, 868-877.	1.9	4

#	Article	IF	CITATIONS
325	Multicriteria Optimization of Molecular Models of Water Using a Reduced Units Approach. Journal of Chemical Theory and Computation, 2020, 16, 5127-5138.	5.3	4
326	Thermophysical Properties of Mixtures of Titanium(IV) Isopropoxide (TTIP) and 2-Propanol (<i>i</i> POH). Journal of Chemical & Engineering Data, 2021, 66, 1296-1304.	1.9	4
327	Development of Models for Large Molecules and Electrolytes in Solution for Process Engineering. , 2010, , 165-176.		4
328	OberflÄ ë henerzeugungs-Morphologie-Eigenschafts-Beziehungen. ZWF Zeitschrift Fuer Wirtschaftlichen Fabrikbetrieb, 2016, 111, 213-216.	0.3	4
329	Mutual diffusion coefficients from NMR imaging. Chemical Engineering Science, 2022, 255, 117655.	3.8	4
330	¹³ C-NMR Spectroscopic Study of the Kinetics of Formaldehyde Oligomerization Reactions in the System (Formaldehyde + Water + Isoprenol). Industrial & Engineering Chemistry Research, 2022, 61, 224-235.	3.7	4
331	Erratum to "Henry's law constants of methane, nitrogen, oxygen and carbon dioxide in ethanol from 273 to 498 K: Prediction from molecular simulation―[Fluid Phase Equilib. 233 (2005) 134–143]. Fluid Phase Equilibria, 2005, 236, 272.	2.5	3
332	Onlineâ€NMRâ€ S pektroskopie – Mischungen messen im Fluss. Nachrichten Aus Der Chemie, 2007, 55, 745-7	49.0.0	3
333	Thermophysical Properties of Dry and Humid Air by Molecular Simulation Including Dew Point Calculations with the Mollier Ensemble. Industrial & Engineering Chemistry Research, 2009, 48, 10110-10119.	3.7	3
334	Second Osmotic Virial Coefficients and Aggregation of Monoclonal Antibodies by Static Laser Light Scattering. Zeitschrift Fur Physikalische Chemie, 2013, 227, 333-344.	2.8	3
335	A new scheme for process simulation by optimization: distillation as an example. Computer Aided Chemical Engineering, 2016, , 205-210.	0.5	3
336	Process Design in World 3.0 – Challenges and Strategies to Master the Raw Material Change. Chemical Engineering and Technology, 2016, 39, 219-224.	1.5	3
337	Solid-liquid equilibrium in the system 2-keto-L-gulonic acidÂ+ sodium-2-keto-L-gulonateÂ+ water. Fluid Phase Equilibria, 2018, 473, 318-322.	2.5	3
338	Hierarchical design of extraction-distillation processes using short-cut apparatus models with piece-wise linearized thermodynamics. Chemical Engineering Science, 2018, 192, 422-433.	3.8	3
339	Physicochemical Properties of the System <i>N</i> , <i>N</i> -Dimethyl-dipropylene-diamino-triacetonediamine (EvA34), Water, and Carbon Dioxide for Reactive Absorption. Journal of Chemical & Engineering Data, 2019, 64, 2368-2379.	1.9	3
340	Measurement and Modeling of Phase Equilibria in Systems Containing Water, Xylose, Furfural, and Acetic Acid. Journal of Chemical & Engineering Data, 2019, 64, 2634-2640.	1.9	3
341	Triacetoneamine-derivates (EvAs) for CO2-absorption from process gases. International Journal of Greenhouse Gas Control, 2020, 95, 102932.	4.6	3
342	Influence of Salts on the Adsorption of Lysozyme on a Mixed-Mode Resin. Adsorption Science and Technology, 2021, 2021, 1-11.	3.2	3

#	Article	IF	CITATIONS
343	Atomistic Simulations of Electrolyte Solutions and Hydrogels with Explicit Solvent Models. , 2012, , 185-199.		3
344	Influence of the Supplying Technique of a Sub-Zero Metalworking Fluid on the Performance of Face Turning of Ti-6Al-4V Titanium Alloy. SSRN Electronic Journal, 0, , .	0.4	3
345	Simulation of Reactive Absorption: Model Validation for CO2-MEA system. Computer Aided Chemical Engineering, 2011, 29, 61-65.	0.5	2
346	<i>ms</i> 2: A Molecular Simulation Tool for Thermodynamic Properties. Chemie-Ingenieur-Technik, 2012, 84, 114-120.	0.8	2
347	Molecular Modelling and Simulation in Fluid Process Engineering. Chemie-Ingenieur-Technik, 2014, 86, 982-990.	0.8	2
348	Comparison of predictions of the PC-SAFT equation of state and molecular simulations for the metastable region of binary mixtures. Fluid Phase Equilibria, 2017, 444, 31-36.	2.5	2
349	Solidâ€Liquid Equilibrium in the System 2â€Ketoâ€ <i>L</i> â€Gulonic Acid + <i>L</i> â€Ascorbic Acid + Water. Chemical Engineering and Technology, 2018, 41, 2306-2311.	1.5	2
350	Influence of pH and Salts on Partial Molar Volume of Lysozyme and Bovine Serum Albumin in Aqueous Solutions. Chemical Engineering and Technology, 2018, 41, 2337-2345.	1.5	2
351	A Navierâ€6tokesâ€Korteweg Model for Dynamic Wetting based on the PeTS Equation of State. Proceedings in Applied Mathematics and Mechanics, 2019, 19, e201900091.	0.2	2
352	Spectroscopic investigations of solutions of lithium bis(fluorosulfonyl) imide (LiFSI) in valeronitrile. Polyhedron, 2020, 183, 114458.	2.2	2
353	Speciation in CO2-loaded aqueous solutions of sixteen triacetoneamine-derivates (EvAs) and elucidation of structure-property relationships. Chemical Engineering Science, 2021, 229, 115999.	3.8	2
354	Phase Field Simulations of Wetting Based on Molecular Simulations. Proceedings in Applied Mathematics and Mechanics, 2021, 20, e20200035.	0.2	2
355	Molecular Modelling and Simulation of Electrolyte Solutions, Biomolecules, and Wetting of Component Surfaces. , 2013, , 647-661.		2
356	Processes for the production of OME fuels. Proceedings, 2020, , 191-203.	0.3	2
357	Molecular Modeling of Hydrogen Bonding Fluids: Vapor-Liquid Coexistence and Interfacial Properties. , 2010, , 471-483.		1
358	CO ₂ Capture Technology – from Research to Large Scale Industrial Operation. Chemie-Ingenieur-Technik, 2011, 83, 1005-1015.	0.8	1
359	Vollautomatisierte Einwaage flüssiger Substanzen mittels Laborroboter. Chemie-Ingenieur-Technik, 2012, 84, 530-534.	0.8	1
360	Influence of sodium chloride on hydrophobic adsorption of PEGylated lysozyme. Engineering in Life Sciences, 2014, 14, 100-105.	3.6	1

#	Article	IF	CITATIONS
361	Molecular Modeling and Simulation in Fluid Process Engineering. ChemBioEng Reviews, 2015, 2, 303-310.	4.4	1
362	Physicochemical Properties of LiFSI Solutions II: LiFSI with Water, MTBE, and Anisole. Journal of Chemical & Engineering Data, 2019, 64, 878-883.	1.9	1
363	Associating lattice cluster theory and application to modeling oleic acid + formic acid + formic acid + formoxystearic acid. AICHE Journal, 2019, 65, 783-791.	3.6	1
364	Influence of Salt and pH on the Swelling Equilibrium of Ionizable N-IPAAm Based Hydrogels: Experimental Results and Modeling. , 2013, , 163-173.		1
365	Molecular Modeling and Simulation of Thermophysical Properties: Application to Pure Substances and Mixtures. , 2009, , 119-133.		1
366	Molecular Modeling of Hydrogen Bonding Fluids: New Cyclohexanol Model and Transport Properties of Short Monohydric Alcohols. , 2009, , 529-541.		1
367	Conceptual design of a crystallization-based trioxane production process. Chemical Engineering and Processing: Process Intensification, 2022, 171, 108710.	3.6	1
368	Density of solutions of formaldehyde in water and alcohols. AICHE Journal, 2022, 68, e17573.	3.6	1
369	Thermodynamic Modeling of Phosphorus Recovery from Wastewater. Waste and Biomass Valorization, 2022, 13, 3013-3023.	3.4	1
370	Investigation of Radial Shaft Seal Swelling Using a Special Tribometer and Magnetic Resonance Imaging. ACS Omega, 2022, 7, 11671-11677.	3.5	1
371	Adsorption in a phase field model for wetting. Proceedings in Applied Mathematics and Mechanics, 2021, 21, .	0.2	1
372	Phase Field Modeling of Dynamic Surface Wetting informed by Molecular Simulations. Proceedings in Applied Mathematics and Mechanics, 2021, 21, .	0.2	1
373	Liquid–liquid equilibria in mixtures of formaldehyde, water, methanol, and isoprenol. Fluid Phase Equilibria, 2022, 561, 113521.	2.5	1
374	Stability analysis of molality-based virial expansion GE-models. Fluid Phase Equilibria, 2005, 227, 267-274.	2.5	0
375	Bio- und Chemieingenieurwissenschaften an der TU Kaiserslautern. Chemie in Unserer Zeit, 2011, 45, 162-162.	0.1	0
376	Guest Editorial: Molecular Modeling and Simulation in Process and Materials Engineering. Soft Materials, 2012, 10, 1-2.	1.7	0
377	Reprint of: Molecular simulation of nano-dispersed fluid phases. Chemical Engineering Science, 2014, 115, 195-204.	3.8	0
378	Adsorption of oleic acid dissolved in isopropanol–water mixtures on hydrotalcite. Adsorption Science and Technology, 2018, 36, 919-926.	3.2	0

#	Article	IF	CITATIONS
379	Solid-liquid equilibrium in the system 2-keto-L-gulonic acidÂ+ sodium-2-keto-L-gulonateÂ+ hydrochloric acidÂ+ sodium chlorideÂ+ water. Fluid Phase Equilibria, 2019, 495, 21-27.	2.5	0
380	A Simple Way for Implementing Extraction Columns of Infinite Height in Flowsheet Simulators. Chemie-Ingenieur-Technik, 2019, 91, 314-322.	0.8	0
381	Die Entwicklung der Verfahrenstechnik an der TU Kaiserslautern. Chemie-Ingenieur-Technik, 2020, 92, 1011-1022.	0.8	0
382	A novel approach for infeasible path optimization of distillation-based flowsheets. Chemical Engineering Science: X, 2020, 7, 100063.	1.5	0
383	Molecular Modeling of Hydrogen Bonding Fluids: Transport Properties and Vapor-Liquid Coexistence. , 2011, , 543-551.		0
384	Molecular Modeling of Hydrogen Bonding Fluids: Phase Behavior of Industrial Fluids. , 2012, , 567-579.		0