List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9388888/publications.pdf Version: 2024-02-01

XIL-FENCLIN

#	Article	IF	CITATIONS
1	Chiral Phosphoric Acid atalyzed Enantioselective Synthesis of Pyrazoleâ€Based Unnatural αâ€Amino Acid Derivatives. Advanced Synthesis and Catalysis, 2022, 364, 274-280.	2.1	12
2	One-pot synthesis of pompon-like bimetallic organic framework for enhanced oxygen evolution electrocatalysis. Journal of Power Sources, 2022, 520, 230812.	4.0	9
3	Enantioselective synthesis of indoleâ€based unnatural∢i>βâ€Alkynyl <i>α</i> â€amino acid derivatives via chiral phosphoric acid catalysis. Chirality, 2022, 34, 678-693.	1.3	5
4	Asymmetric [3 + 3] Annulation to Construct Trifluoromethylated Pyrazolo[3,4- <i>b</i>]pyridin-6-ones via Chiral Phosphoric Acid and MgSO ₄ Synergistic Catalysis. Organic Letters, 2022, 24, 4058-4063.	2.4	11
5	Enantioselective synthesis of α-tetrasubstituted (3-indolizinyl) (diaryl)methanamines <i>via</i> chiral phosphoric acid catalysis. RSC Advances, 2022, 12, 20499-20506.	1.7	4
6	Chiral Spirocyclic Phosphoric Acids and Their Growing Applications. Chinese Journal of Chemistry, 2021, 39, 802-824.	2.6	46
7	Chiral Phosphoric Acid Catalyzed Enantioselective [4+3]-Cyclization Reaction of Indol-4-ylmethanols and Quinone Esters. Synlett, 2021, 32, 1231-1235.	1.0	8
8	Organocatalytic Asymmetric Dearomatization Reaction for the Synthesis of Axial Chiral Allene-Derived Naphthalenones Bearing Quaternary Stereocenters. Organic Letters, 2021, 23, 6606-6611.	2.4	29
9	Recent Advances of Pd/C-Catalyzed Reactions. Catalysts, 2021, 11, 1078.	1.6	30
10	Enantioselective Synthesis of Difluoroalkylated Isoindolinones via Chiral Spirocyclic Phosphoric Acid Catalyzed Mannich-Type Reaction. Synlett, 2021, 32, 417-422.	1.0	12
11	Recent advances in the asymmetric phosphoric acid-catalyzed synthesis of axially chiral compounds. Beilstein Journal of Organic Chemistry, 2021, 17, 2729-2764.	1.3	18
12	Synthesis of Axially Chiral Biarylâ€2â€amines by Pd ^{II} â€Catalyzed Freeâ€Amineâ€Directed Atroposelective Câ^'H Olefination. Angewandte Chemie - International Edition, 2020, 59, 3568-3572.	7.2	114
13	Palladium-Catalyzed Directed Atroposelective C–H Allylation via β-H Elimination: 1,1-Disubstituted Alkenes as Allyl Surrogates. Organic Letters, 2020, 22, 9693-9698.	2.4	34
14	Synthesis of Chiral Tertiary Amine–Thioureas Based on SpirobiÂindane and Application in Catalytic Asymmetric Michael Addition Reaction. Synthesis, 2020, 52, 1131-1139.	1.2	5
15	Atroposelective Phosphoric Acid Catalyzed Threeâ€Component Cascade Reaction: Enantioselective Synthesis of Axially Chiral Nâ€Arylindoles. Angewandte Chemie - International Edition, 2019, 58, 15824-15828.	7.2	131
16	Iron-catalyzed asymmetric intramolecular cyclopropanation reactions using chiral tetramethyl-1,1â€2-spirobiindane-based bisoxazoline (TMSI-BOX) ligands. Organic and Biomolecular Chemistry, 2019, 17, 1154-1162.	1.5	10
17	Design of Planar Chiral Phosphoric Acids with a [2.2]Paracyclophanyl Backbone as Organocatalysts for the Highly Enantioselective Aza-Friedel–Crafts Reaction. Organic Letters, 2019, 21, 3682-3686. 	2.4	24
18	Enantioselective Synthesis of Biaryl Atropisomers by Pd atalyzed Câ^'H Olefination using Chiral Spiro Phosphoric Acid Ligands. Angewandte Chemie - International Edition, 2019, 58, 6708-6712.	7.2	183

#	Article	IF	CITATIONS
19	Total Syntheses of (+)â€Sarcophytin, (+)â€Chatancin, (â^')â€3â€Oxochatancin, and (â^')â€Pavidolideâ€B: A Dive Approach. Angewandte Chemie, 2019, 131, 5154-5158.	ergent P.6	5
20	Total Syntheses of (+)â€Sarcophytin, (+)â€Chatancin, (â^')â€3â€Oxochatancin, and (â^')â€Pavidolideâ€B: A Dive Approach. Angewandte Chemie - International Edition, 2019, 58, 5100-5104.	Prgent 7.2	22
21	Atroposelective Phosphoric Acid Catalyzed Threeâ€Component Cascade Reaction: Enantioselective Synthesis of Axially Chiral Nâ€Arylindoles. Angewandte Chemie, 2019, 131, 15971-15975.	1.6	30
22	Synthesis and Optical Resolution of 3,3,3′,3′-Tetramethyl-1,1′-spirobiindane-7,7′-diol. Synthesis, 2019, 557-563.	51. 1.2	7
23	Synthesis and application of a new hexamethyl-1,1′-spirobiindane-based chiral bisphosphine (HMSI-PHOS) ligand in asymmetric allylic alkylation. Organic and Biomolecular Chemistry, 2018, 16, 2239-2247.	1.5	14
24	Organocatalytic asymmetric synthesis of benzazepinoindole derivatives with trifluoromethylated quaternary stereocenters by chiral phosphoric acid catalysts. Organic and Biomolecular Chemistry, 2018, 16, 1367-1374.	1.5	25
25	Synthesis and Application of Hexamethyl-1,1′-spirobiindane-Based Phosphine-Oxazoline Ligands in Ni-Catalyzed Asymmetric Arylation of Cyclic Aldimines. Journal of Organic Chemistry, 2018, 83, 4034-4043.	1.7	39
26	Iron-Catalyzed Enantioselective Si–H Bond Insertions. Organic Letters, 2018, 20, 6544-6549.	2.4	56
27	Rhodium-Catalyzed Asymmetric Addition of Organoboronic Acids to Aldimines Using Chiral Spiro Monophosphite-Olefin Ligands: Method Development and Mechanistic Studies. Journal of Organic Chemistry, 2018, 83, 11873-11885.	1.7	25
28	Development and application of chiral spirocyclic phosphoric acids in asymmetric catalysis. Organic and Biomolecular Chemistry, 2018, 16, 4753-4777.	1.5	121
29	Asymmetric organocatalytic synthesis of chiral 3,3-disubstituted oxindoles <i>via</i> a 1,6-conjugate addition reaction. Organic and Biomolecular Chemistry, 2018, 16, 5301-5309.	1.5	17
30	Synthesis and application of a new chiral monodentate spiro phosphoramidite ligand based on hexamethyl-1,1′-spirobiindane backbone in asymmetric hydroamination/arylation of alkenes. Organic and Biomolecular Chemistry, 2018, 16, 6183-6186.	1.5	10
31	Asymmetric synthesis of CF ₃ - and indole-containing tetrahydro-β-carbolines via chiral spirocyclic phosphoric acid-catalyzed aza-Friedel–Crafts reaction. Organic Chemistry Frontiers, 2017, 4, 1407-1410.	2.3	37
32	Enantioselective synthesis of cyclic quaternary α-amino acid derivatives by chiral phosphoric acid catalysis. Organic and Biomolecular Chemistry, 2017, 15, 6033-6041.	1.5	19
33	Diastereo- and Enantioselective Assembly of Spirooxindole Tetrahydroquinoline Skeletons through Asymmetric Binary Acid Catalyzed Hydride Transfer–Cyclization. Synlett, 2016, 27, 546-550.	1.0	14
34	Organocatalytic Asymmetric Synthesis of Dihydrobenzoxazinones Bearing Trifluoromethylated Quaternary Stereocenters. Journal of Organic Chemistry, 2016, 81, 2019-2026.	1.7	56
35	Triply Hydrogenâ€Bondâ€Directed Enantioselective Assembly of Pyrrolobenzoâ€1,4â€diazine Skeletons with Quaternary Stereocenters. Chemistry - A European Journal, 2015, 21, 9039-9043.	1.7	35
36	Enantioselective synthesis of benzazepinoindoles bearing trifluoromethylated quaternary stereocenters catalyzed by chiral spirocyclic phosphoric acids. Chemical Communications, 2014, 50, 7538-7541.	2.2	57

#	Article	IF	CITATIONS
37	Highly enantioselective hydrophosphonylation of imines catalyzed by SPINOL-phosphoric acid. RSC Advances, 2013, 3, 11895.	1.7	25
38	Highly enantioselective three-component Povarov reaction catalyzed by SPINOL-phosphoric acids. RSC Advances, 2013, 3, 573-578.	1.7	42
39	Highly Enantioselective Synthesis of Dihydroquinazolinones Catalyzed by SPINOL-Phosphoric Acids. ACS Catalysis, 2013, 3, 2244-2247.	5.5	92
40	Organocatalytic asymmetric multicomponent reactions of aromatic aldehydes and anilines with β-ketoesters: facile and atom-economical access to chiral tetrahydropyridines. Chemical Communications, 2013, 49, 1401.	2.2	79
41	Efficient synthesis of dihydropyrimidinones via a three-component Biginelli-type reaction of urea, alkylaldehyde and arylaldehyde. Beilstein Journal of Organic Chemistry, 2013, 9, 2846-2851.	1.3	24
42	Highly enantioselective Biginelli reaction catalyzed by SPINOL-phosphoric acids. Organic and Biomolecular Chemistry, 2012, 10, 4467.	1.5	66
43	A general access to 1,1-cyclopropane aminoketones and their conversion into 2-benzoyl quinolines. Chemical Communications, 2012, 48, 9927.	2.2	35
44	One-pot multicomponent synthesis of polysubstituted indolizines. Tetrahedron, 2012, 68, 85-91.	1.0	29
45	Highly Enantioselective Pictet–Spengler Reaction Catalyzed by SPINOLâ€Phosphoric Acids. Chemistry - A European Journal, 2012, 18, 3148-3152.	1.7	132
46	Three-Component Synthesis of Polysubstituted Pyrroles from α-Diazoketones, Nitroalkenes, and Amines. Organic Letters, 2011, 13, 4668-4671.	2.4	96
47	A straightforward one-pot multicomponent synthesis of polysubstituted pyrroles. Chemical Communications, 2011, 47, 6620.	2.2	66
48	Three-component reaction for the C2-functionalization of 1-substituted imidazoles with acetylenic ketones and isocyanates. Tetrahedron, 2011, 67, 8338-8342.	1.0	15
49	Molecular iodine-catalyzed and air-mediated tandem synthesis of quinolines via three-component reaction of amines, aldehydes, and alkynes. Tetrahedron, 2011, 67, 3858-3862.	1.0	97
50	Facile synthesis of 1,2,4-triazolines via PPh3-triggered reaction of azodicarboxylate with 2-azidoacrylates. Tetrahedron, 2011, 67, 650-654.	1.0	24
51	Editorial [Hot topic: Multicomponent Reactions (Guest Editor: Dr. Xu-Feng Lin)]. Current Organic Chemistry, 2010, 14, 331-331.	0.9	2
52	DDQ-Mediated Tandem Synthesis of Functionalized Pyranocoumarins from 4-Hydroxycoumarins and 1,3-Diarylallylic Compounds. Heterocycles, 2010, 81, 965.	0.4	24
53	SPINOL-Derived Phosphoric Acids: Synthesis and Application in Enantioselective Friedelâ^'Crafts Reaction of Indoles with Imines. Journal of Organic Chemistry, 2010, 75, 8677-8680.	1.7	240
54	Synthesis of Substituted Indoles from 2-Azidoacrylates and <i>ortho</i> -Silyl Aryltriflates. Organic Letters, 2010, 12, 4608-4611.	2.4	80

#	Article	IF	CITATIONS
55	Molecular iodine-catalysed amidation reaction of secondary benzylic and allylic alcohols with carboxamides or sulfonamides. Journal of Chemical Research, 2009, 2009, 638-641.	0.6	8
56	A Yb(OTf)3/PEG-Supported Quaternary Ammonium Salt Catalyst System for a Three-Component Mannich-Type Reaction in Aqueous Media. Synlett, 2009, 2009, 1107-1110.	1.0	3
57	Palladium on Charcoal as a Recyclable Catalyst for CS Crossâ€Coupling of Thiols with Aryl Halides under Ligandâ€Free Conditions. Advanced Synthesis and Catalysis, 2009, 351, 2558-2562.	2.1	55
58	Molecular iodine-catalyzed C3-alkylation of 4-hydroxycoumarins with secondary benzyl alcohols. Tetrahedron, 2009, 65, 9233-9237.	1.0	63
59	Copper-Catalyzed Tandem Nucleophilic Ring-Opening/Intramolecular Oxidative Amidation of <i>N</i> -Tosylaziridines and Hydrazones under Aerobic Conditions. Organic Letters, 2009, 11, 5678-5681.	2.4	46
60	Molecular iodine-catalyzed diastereoselective synthesis of cis-fused pyranobenzopyrans and furanobenzopyrans. Tetrahedron Letters, 2008, 49, 5208-5210.	0.7	53
61	Domino Reaction of 3-(2-Formylphenoxy)propenoates and Amines:Â A Novel Synthesis of 1,4-Dihydropyridines from Salicaldehydes, Ethyl Propiolate, and Amines. Journal of Organic Chemistry, 2007, 72, 7779-7782.	1.7	41
62	A Highly Selective Cascade Approach to Diverse Aromatic Ring Systems from Simple Aromatic Aldehydes and Propiolates. Organic Letters, 2006, 8, 1241-1244.	2.4	35
63	Novel and Efficient Synthesis of Iminocoumarins via Copper-Catalyzed Multicomponent Reaction. Organic Letters, 2006, 8, 4517-4520.	2.4	159
64	Molecular iodine-catalyzed one-pot synthesis of substituted quinolines from imines and aldehydes. Tetrahedron Letters, 2006, 47, 3127-3130.	0.7	109
65	A highly efficient synthesis of 1,2,3,4-tetrahydroquinolines by molecular iodine-catalyzed domino reaction of anilines with cyclic enol ethers. Tetrahedron Letters, 2006, 47, 4509-4512.	0.7	117
66	Cascade Reactions of Aromatic Aldehydes with Electron-Deficient Acetylenes: Regioselective Construction of Diverse Aromatic Ring Systems. European Journal of Organic Chemistry, 2006, 2006, 5174-5183.	1.2	17
67	PdCl2 Immobilized in Ionic Liquids: A Novel and Efficient Catalytic System for Michael Additions of Indoles to ,α,β-Unsaturated Ketones. Letters in Organic Chemistry, 2006, 3, 414-418.	0.2	3
68	Parallel Synthesis of Strongly Fluorescent Polysubstituted 2,6-Dicyanoanilines via Microwave-Promoted Multicomponent Reaction ChemInform, 2005, 36, no.	0.1	80
69	Methyl 2-amino-4-methyl-6-phenyl-6H-1,3-thiazine-5-carboxylate. Acta Crystallographica Section E: Structure Reports Online, 2005, 61, o2207-o2208.	0.2	1
70	Methyl 4-(3-amino-2,4-dicyano-5,6,7,8-tetrahydronaphthalen-1-yl)benzoate. Acta Crystallographica Section E: Structure Reports Online, 2005, 61, o3198-o3199.	0.2	1
71	Palladium-Catalyzed Michael Addition of Indoles to α,β-Unsaturated Ketones in an Ionic Liquid. Synlett, 2005, 2005, 2003-2006.	1.0	4
72	Parallel Synthesis of Strongly Fluorescent Polysubstituted 2,6-Dicyanoanilines via Microwave-Promoted Multicomponent Reaction. Journal of Organic Chemistry, 2005, 70, 2866-2869.	1.7	156

#	Article	IF	CITATIONS
73	An Efficient Protocol for the Liquid-Phase Synthesis of Furanoquinolines and Pyranoquinolines. Synlett, 2004, 2004, 1175-1178.	1.0	23
74	Soluble polymerâ€supported synthesis of pyrazoles via 1,3â€dipolar cycloaddition strategy. Chinese Journal of Chemistry, 2004, 22, 415-418.	2.6	3
75	Parallel synthesis of 4,5-dihydro-1,2,4-oxadiazoles using soluble polymer support. Tetrahedron Letters, 2003, 44, 4113-4115.	0.7	25
76	Parallel Synthesis of Pyrazolineson Soluble Polymer Support. Synlett, 2003, 2003, 1467-1468.	1.0	20
77	Rapid One-pot Solid-phase Synthesis of 1,2,4-Oxadiazolines. Chemistry Letters, 2003, 32, 842-843.	0.7	17