
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9388872/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Antiperovskite materials as promising candidates for efficient tandem photovoltaics: First-principles investigation. Materials Science in Semiconductor Processing, 2022, 147, 106727.	1.9	6
2	Understanding the optoelectronic properties of interface between Cs2TiBr6 and TiO2 for solar cell applications. Materials Today Communications, 2022, 32, 103963.	0.9	0
3	Revealing the optoelectronic properties of tin-based vacancy ordered double perovskites: K2SnBr6 and Rb2SnBr6. AIP Conference Proceedings, 2021, , .	0.3	2
4	Effect of Electron Doping on the Crystal Structure and Physical Properties of an <i>n</i> = 3 Ruddlesden–Popper Compound La ₄ Ni ₃ O ₁₀ . ACS Applied Electronic Materials, 2021, 3, 2671-2684.	2.0	1
5	Unravelling the crystal structure and optoelectronic properties of C3H3MI3 (M = Sn, Pb) for solar cell applications. Solar Energy Materials and Solar Cells, 2021, 230, 111133.	3.0	1
6	A promising cathode material with high Na content for Na-ion battery applications from ab-initio calculations. AIP Conference Proceedings, 2021, , .	0.3	0
7	Investigation of Electronic Structure and Electrochemical Properties of Na2MnSiO4 as a Cathode Material for Na Ion Batteries. Journal of Physical Chemistry C, 2021, 125, 25968-25982.	1.5	6
8	Role of W-site substitution on mechanical and electronic properties of cubic tungsten carbide. Journal of Physics Condensed Matter, 2020, 32, 145701.	0.7	5
9	Thermal, electronic and thermoelectric properties of TiNiSn and TiCoSb based quaternary half Heusler alloys obtained from <i>ab initio</i> calculations. Sustainable Energy and Fuels, 2020, 4, 895-910.	2.5	15
10	Two-Dimensional CdX/C ₂ N (X = S, Se) Heterostructures as Potential Photocatalysts for Water Splitting: A DFT Study. ACS Omega, 2020, 5, 23762-23768.	1.6	45
11	Comment on the paper titled"Two-dimensional Sc2C: A reversible and high capacity hydrogen storage material predicted by first-principles calculations―by Hu etÂal., International Journal of Hydrogen Energy, 2014; 69, 1–4. International Journal of Hydrogen Energy, 2020, 45, 7254-7256.	3.8	2
12	Earth-abundant nontoxic direct band gap semiconductors for photovoltaic applications by ab-initio simulations. Solar Energy, 2019, 190, 350-360.	2.9	11
13	Ab-initio modelling of new cathode material for Li-ion battery based on the Ti substituted Li2Fe(SO4)2. AIP Conference Proceedings, 2019, , .	0.3	0
14	Li-rich Li6MnxFe(1-x)S4 as cathode material for Li-ion battery. AIP Conference Proceedings, 2019, , .	0.3	0
15	Theoretical investigation on the effect of multinary isoelectronic substitution on TiCoSb based half-Heusler alloys. AIP Conference Proceedings, 2019, , .	0.3	0
16	Effect of anionic and cationic substitutions on the magnetic property of hydrated $\hat{l}\pm$ -MnO2. AIP Conference Proceedings, 2019, , .	0.3	0
17	Ti4+ substituted magnesium hydride as promising material for hydrogen storage and photovoltaic applications. AIP Conference Proceedings, 2019, , .	0.3	3
18	Amphoteric behavior of hydrogen in bimetallic molecular like hydrides. AIP Conference Proceedings, 2019, , .	0.3	0

#	Article	IF	CITATIONS
19	Ab-initio based thermodynamic study on α-NaMnO2 for Na-ion battery applications. AIP Conference Proceedings, 2019, , .	0.3	0
20	First principles prediction of the ground state crystal structures of antiperovskite compounds A3PN (A= Be, Mg, Ca, Sr, Ba and Zn). Materials Today: Proceedings, 2019, 8, 294-300.	0.9	5
21	Giant Magnetoelectric Coupling in Multiferroic PbTi _{1–<i>x</i>} V _{<i>x</i>} O ₃ from Density Functional Calculations. ACS Omega, 2019, 4, 16743-16755.	1.6	1
22	Large Negative Thermal Expansion Induced by Synergistic Effects of Ferroelectrostriction and Spin Crossover in PbTiO ₃ -Based Perovskites. Chemistry of Materials, 2019, 31, 1296-1303.	3.2	29
23	Zinc substituted MgH2 - a potential material for hydrogen storage applications. International Journal of Hydrogen Energy, 2019, 44, 13632-13646.	3.8	5
24	Amphoteric behavior of hydrogen (<i>H</i> ⁺¹ and <i>H</i> ^{â^`1}) in complex hydrides from van der Waals interaction-including <i>ab initio</i> calculations. Journal of Materials Chemistry A, 2019, 7, 6228-6240.	5.2	7
25	Potential hydrogen storage materials from metal decorated 2D-C ₂ N: an <i>ab initio</i> study. Physical Chemistry Chemical Physics, 2019, 21, 25311-25322.	1.3	53
26	Influence of hydrogen and halogen adsorption on the photocatalytic water splitting activity of C2N monolayer: A first-principles study. Carbon, 2019, 141, 50-58.	5.4	54
27	Phosphorene-AsP heterostructure as a potential excitonic solar cell material - A first principles study. AIP Conference Proceedings, 2018, , .	0.3	3
28	Search for thermoelectrics with high figure of merit in half-Heusler compounds with multinary substitution. AIP Conference Proceedings, 2018, , .	0.3	0
29	Metamagnetism stabilized giant magnetoelectric coupling in ferroelectric xBaTiO3–(1 â^' x)BiCoO3 solid solution. Physical Chemistry Chemical Physics, 2018, 20, 7021-7032.	1.3	8
30	Chemical bonding analysis on amphoteric hydrogen – alkaline earth ammine borohydrides. AIP Conference Proceedings, 2018, , .	0.3	2
31	Theoretical investigation of the magnetoelectric properties of Bi2NiTiO6. AIP Conference Proceedings, 2018, , .	0.3	0
32	Effect of multinary substitution on electronic and transport properties of TiCoSb based half-Heusler alloys. AIP Conference Proceedings, 2018, , .	0.3	1
33	A first principle study on iron substituted LiNi (BO3) to use as cathode material for Li-ion batteries. AIP Conference Proceedings, 2018, , .	0.3	1
34	Magnetoelectric properties of Pb free Bi2FeTiO6: A theoretical investigation. AIP Conference Proceedings, 2018, , .	0.3	0
35	Te doped indium (II) selenide photocatalyst for water splitting: A first principles study. AIP Conference Proceedings, 2017, , .	0.3	6
36	Enhanced Photocatalytic Water Splitting in a C ₂ N Monolayer by C‧ite Isoelectronic Substitution. ChemPhysChem, 2017, 18, 1526-1532.	1.0	46

#	Article	IF	CITATIONS
37	Phase Stability, Phase Mixing, and Phase Separation in Fluorinated Alkaline Earth Hydrides. Journal of Physical Chemistry C, 2017, 121, 21806-21820.	1.5	6
38	Tailoring the Electronic Band Gap and Band Edge Positions in the C ₂ N Monolayer by P and As Substitution for Photocatalytic Water Splitting. Journal of Physical Chemistry C, 2017, 121, 22216-22224.	1.5	80
39	Structural phase stability in fluorinated calcium hydride. AIP Conference Proceedings, 2017, , .	0.3	3
40	Theoretical and experimental investigation on structural, electronic and magnetic properties of layered Mn ₅ O ₈ . Physical Chemistry Chemical Physics, 2016, 18, 27885-27896.	1.3	14
41	Electronic and Magnetic Structures of Hole Doped Trilayer La _{4–<i>x</i>} Sr _{<i>x</i>} Ni ₃ O ₈ from First-Principles Calculations. Inorganic Chemistry, 2016, 55, 11898-11907.	1.9	9
42	Graphene decorated with Fe nanoclusters for improving the hydrogen sorption kinetics of MgH ₂ – experimental and theoretical evidence. Catalysis Science and Technology, 2016, 6, 261-268.	2.1	54
43	Structural and electronic properties of transparent conducting delafossite: a comparison between the AgBO ₂ and CuBO ₂ families (BA= Al, Ga, In and Sc, Y). RSC Advances, 2015, 5, 1366-1377.	1.7	32
44	Influence of Crystal Structure of Bulk Phase on the Stability of Nanoscale Phases: Investigation on MgH ₂ Derived Nanostructures. Journal of Physical Chemistry C, 2012, 116, 18965-18972.	1.5	30
45	Prediction of structural, lattice dynamical, and mechanical properties of CaB2. RSC Advances, 2012, 2, 11687.	1.7	15
46	<i>Ab-initio</i> studies on Li doping, Li-pairs, and complexes between Li and intrinsic defects in ZnO. Journal of Applied Physics, 2012, 111, .	1.1	29
47	MgH ₂ in Carbon Scaffolds: A Combined Experimental and Theoretical Investigation. Journal of Physical Chemistry C, 2012, 116, 21139-21147.	1.5	28
48	Formation of an intermediate band in isoreticular metal–organic framework-993 (IRMOF-993) and metal-substituted analogues M-IRMOF-993. Journal of Materials Chemistry, 2012, 22, 16324.	6.7	37
49	Ab initio investigations on the crystal structure, formation enthalpy, electronic structure, chemical bonding, and optical properties of experimentally synthesized isoreticular metal–organic framework-10 and its analogues: M-IRMOF-10 (M = Zn, Cd, Be, Mg, Ca, Sr and Ba). RSC Advances, 2012, 2, 1618-1631.	1.7	63
50	Energetics of intrinsic defects and their complexes in ZnO investigated by density functional calculations. Physical Review B, 2011, 83, .	1.1	162
51	Prediction of crystal structure, lattice dynamical, and mechanical properties of CaB2H2. International Journal of Hydrogen Energy, 2011, 36, 10149-10158.	3.8	16
52	Electronic structure of multiferroic <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline"><mml:mrow><mml:msub><mml:mrow><mml:mtext>BiFeO</mml:mtext></mml:mrow><mml:m related compounds: Electron energy loss spectroscopy and density functional study. Physical Review B, 2010, 82, .</mml:m </mml:msub></mml:mrow></mml:math>	n>31.1	l:mg>
53	Theoretical Investigations on the Chemical Bonding, Electronic Structure, And Optical Properties of the Metalâ "Organic Framework MOF-5. Inorganic Chemistry, 2010, 49, 10283-10290.	1.9	112
54	Electronic structure and optical properties of ZnSiO3 and Zn2SiO4. Journal of Applied Physics, 2009, 106, .	1.1	75

#	Article	IF	CITATIONS
55	The search for novel hydrogen storage materials: a theoretical approach. International Journal of Nuclear Hydrogen Production and Applications, 2009, 2, 137.	0.2	2
56	Magneticâ€Instabilityâ€Induced Giant Magnetoelectric Coupling. Advanced Materials, 2008, 20, 1353-1356.	11.1	47
57	Hydrides as materials for semiconductor electronics. Philosophical Magazine, 2008, 88, 2461-2476.	0.7	33
58	Novel High Pressure Phases of β-AlH3: A Density-Functional Study. Chemistry of Materials, 2008, 20, 5997-6002.	3.2	31
59	Density Functional Theory Studies of Spin, Charge, and Orbital Ordering in YBaT ₂ O ₅ (T = Mn, Fe, Co). Inorganic Chemistry, 2008, 47, 6608-6620.	1.9	10
60	Electronic structure and optical properties ofZnX(X=O,S, Se, Te): A density functional study. Physical Review B, 2007, 75, .	1.1	225
61	Phase stability, electronic structure, and optical properties of indium oxide polytypes. Physical Review B, 2007, 76, .	1.1	194
62	Hydride electronics. Physica Status Solidi (A) Applications and Materials Science, 2007, 204, 3538-3544.	0.8	17
63	Structural stability and pressure-induced phase transitions inMgH2. Physical Review B, 2006, 73, .	1.1	154
64	Theoretical investigation of magnetoelectric behavior inBiFeO3. Physical Review B, 2006, 74, .	1.1	582
65	Coulomb correlation effects in zinc monochalcogenides. Journal of Applied Physics, 2006, 100, 043709.	1.1	86
66	Modeling of hydrogen storage materials by density-functional calculations. Journal of Power Sources, 2006, 159, 88-99.	4.0	32
67	First-principles density-functional calculations on HCr3O8: An exercise to better understand the ACr3O8(A = alkali metal) family. Journal of Electroceramics, 2006, 17, 15-20.	0.8	2
68	Spin- and charge-ordering in oxygen-vacancy-ordered mixed-valenceSr4Fe4O11. Physical Review B, 2006, 74, .	1.1	24
69	High hydrogen content complex hydrides: A density-functional study. Applied Physics Letters, 2006, 89, 071906.	1.5	68
70	Site preference of hydrogen in metal, alloy, and intermetallic frameworks. Europhysics Letters, 2005, 72, 569-575.	0.7	19
71	Theoretical modeling of hydrogen storage materials: Prediction of structure, chemical bond character, and high-pressure behavior. Journal of Alloys and Compounds, 2005, 404-406, 377-383.	2.8	18
72	Search for metal hydrides with short hydrogen–hydrogen separation:â€,Ab initiocalculations. Physical Review B, 2004, 70, .	1.1	21

#	Article	IF	CITATIONS
73	Structural stability of BeH2 at high pressures. Applied Physics Letters, 2004, 84, 34-36.	1.5	51
74	Collective ionic motion in oxide fast-ion-conductors. Physical Chemistry Chemical Physics, 2004, 6, 3052-3055.	1.3	28
75	Design of Potential Hydrogen-Storage Materials Using First-Principle Density-Functional Calculations. Crystal Growth and Design, 2004, 4, 471-477.	1.4	51
76	Effect of oxygen stoichiometry on spin, charge, and orbital ordering in manganites. Physical Review B, 2004, 69, .	1.1	25
77	Pressure-induced phase of NaAlH4: A potential candidate for hydrogen storage?. Applied Physics Letters, 2003, 82, 2257-2259.	1.5	112
78	Prediction of large polar Kerr rotation in the Heusler-related alloys AuMnSb and AuMnSn. Applied Physics Letters, 2003, 82, 2862-2864.	1.5	22
79	Short hydrogen-hydrogen separation inRNiInH1.333(R=La,Ce, Nd). Physical Review B, 2003, 67, .	1.1	47
80	Spin, charge, and orbital ordering in the ferrimagnetic insulatorYBaMn2O5. Physical Review B, 2002, 65, .	1.1	17
81	Itinerant metamagnetism and possible spin transition in LaCoO[sub 3] by temperature/hole doping. Journal of Applied Physics, 2002, 91, 291.	1.1	108
82	Violation of the Minimum H-H Separation "Rule" for Metal Hydrides. Physical Review Letters, 2002, 89, 106403.	2.9	62
83	Electronic structure, phase stability, and chemical bonding inTh2AlandTh2AlH4. Physical Review B, 2002, 65, .	1.1	23
84	Ground-state and excited-state properties ofLaMnO3from full-potential calculations. Physical Review B, 2002, 65, .	1.1	108
85	Pressure-Induced Structural Transitions inMgH2. Physical Review Letters, 2002, 89, 175506.	2.9	186
86	Electronic structure, bonding, and ground-state properties of AlB_{2}-type transition-metal diborides. Physical Review B, 2001, 63, .	1.1	436
87	Sign reversal of the orbital moment via ligand states. Physical Review B, 2001, 63, .	1.1	35
88	Large magnetocrystalline anisotropy in bilayer transition metal phases from first-principles full-potential calculations. Physical Review B, 2001, 63, .	1.1	182
89	Detailed electronic structure studies on superconductingMgB2and related compounds. Physical Review B, 2001, 64, .	1.1	159
90	Absence of a pressure-induced structural phase transition inTi3Alup to 25 GPa. Physical Review B, 2000, 63, .	1.1	13

#	Article	IF	CITATIONS
91	Magnetic, optical, and magneto-optical properties of MnX(X=As, Sb, or Bi) from full-potential calculations. Physical Review B, 1999, 59, 15680-15693.	1.1	126
92	Electronic structure, chemical bonding, and optical properties of ferroelectric and antiferroelectricNaNO2. Physical Review B, 1999, 59, 1776-1785.	1.1	160
93	Density functional theory for calculation of elastic properties of orthorhombic crystals: Application to TiSi2. Journal of Applied Physics, 1998, 84, 4891-4904.	1.1	1,565
94	Optical properties of monoclinic Snl2from relativistic first-principles theory. Physical Review B, 1997, 56, 6851-6861.	1.1	82
95	Correlation between electronic structure, mechanical properties and phase stability in intermetallic compounds. Bulletin of Materials Science, 1997, 20, 613-622.	0.8	107
96	Electronic structure, phase stability, equation of state, and pressure-dependent superconducting properties ofZr3Al. Physical Review B, 1994, 50, 668-678.	1.1	40