Dong-Rong Xiao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9388496/publications.pdf

Version: 2024-02-01

94269 102304 4,892 132 37 66 citations g-index h-index papers 135 135 135 3248 docs citations times ranked citing authors all docs

#	Article	lF	CITATIONS
1	Conductive Covalent Organic Frameworks with Conductivity- and Pre-Reduction-Enhanced Electrochemiluminescence for Ultrasensitive Biosensor Construction. Analytical Chemistry, 2022, 94, 3685-3692.	3.2	36
2	Electrochemiluminescence enhanced by isolating ACQphores in pyrene-based porous organic polymer: A novel ECL emitter for the construction of biosensing platform. Analytica Chimica Acta, 2022, 1206, 339648.	2.6	16
3	Conductive NiCo bimetal-organic framework nanorods with conductivity-enhanced electrochemiluminescence for constructing biosensing platform. Sensors and Actuators B: Chemical, 2022, 362, 131802.	4.0	17
4	Regioselective synthesis of fused oxa-heterocycles <i>via</i> iodine-mediated annulation of cyclic 1,3-dicarbonyl compounds with propargylic alcohols. Organic Chemistry Frontiers, 2021, 8, 1155-1162.	2.3	7
5	Highly efficient electrochemiluminescence resonance energy transfer material constructed from an AlEgen-based 2D ultrathin metal–organic layer for thrombin detection. Chemical Communications, 2021, 57, 4323-4326.	2.2	17
6	Highly Stable Covalent Organic Framework Nanosheets as a New Generation of Electrochemiluminescence Emitters for Ultrasensitive MicroRNA Detection. Analytical Chemistry, 2021, 93, 3258-3265.	3.2	75
7	Ruthenium(II) Complex-Grafted Hollow Hierarchical Metal–Organic Frameworks with Superior Electrochemiluminescence Performance for Sensitive Assay of Thrombin. Analytical Chemistry, 2021, 93, 6239-6245.	3.2	53
8	Crystallization-Induced Enhanced Electrochemiluminescence from Tetraphenyl Alkene Nanocrystals for Ultrasensitive Sensing. Analytical Chemistry, 2021, 93, 10890-10897.	3.2	23
9	Overcoming Aggregation-Induced Quenching by Metalâ^'Organic Framework for Electrochemiluminescence (ECL) Enhancement: Zn-PTC as a New ECL Emitter for Ultrasensitive MicroRNAs Detection. ACS Applied Materials & Detection.	4.0	53
10	Two Birds with One Stone: Surface Functionalization and Delamination of Multilayered Ti ₃ C ₂ T _{<i>x</i>} MXene by Grafting a Ruthenium(II) Complex to Achieve Conductivity-Enhanced Electrochemiluminescence. Analytical Chemistry, 2021, 93, 1834-1841.	3.2	39
11	Helical Coordination Polymers Based on Kegginâ€type POMs and Nâ€donor Ligand. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2020, 646, 452-456.	0.6	1
12	One-Pot Synthesis of 2,4-Diacyl Thiophenes from $\hat{l}\pm$ -Oxo Ketene Dithioacetals and Propargylic Alcohols. Journal of Organic Chemistry, 2020, 85, 9761-9775.	1.7	16
13	An AlEgen-based 2D ultrathin metal–organic layer as an electrochemiluminescence platform for ultrasensitive biosensing of carcinoembryonic antigen. Nanoscale, 2020, 12, 5932-5941.	2.8	71
14	Restriction of intramolecular motions (RIM) by metal-organic frameworks for electrochemiluminescence enhancement:2D Zr12-adb nanoplate as a novel ECL tag for the construction of biosensing platform. Biosensors and Bioelectronics, 2020, 155, 112099.	5.3	48
15	Matrix Coordination-Induced Electrochemiluminescence Enhancement of Tetraphenylethylene-Based Hafnium Metal–Organic Framework: An Electrochemiluminescence Chromophore for Ultrasensitive Electrochemiluminescence Sensor Construction. Analytical Chemistry, 2020, 92, 3380-3387.	3.2	112
16	Ruthenium complex doped metal-organic nanoplate with high electrochemiluminescent intensity and stability for ultrasensitive assay of mucin 1. Sensors and Actuators B: Chemical, 2019, 292, 105-110.	4.0	28
17	A highly sensitive self-enhanced aptasensor based on a stable ultrathin 2D metal–organic layer with outstanding electrochemiluminescence property. Nanoscale, 2019, 11, 10056-10063.	2.8	36
18	Highly stable Ru-complex-grafted 2D metal-organic layer with superior electrochemiluminescent efficiency as a sensing platform for simple and ultrasensitive detection of mucin 1. Biosensors and Bioelectronics, 2019, 135, 95-101.	5. 3	55

#	Article	IF	CITATIONS
19	Highly Stable Mesoporous Luminescence-Functionalized MOF with Excellent Electrochemiluminescence Property for Ultrasensitive Immunosensor Construction. ACS Applied Materials & Interfaces, 2018, 10, 15913-15919.	4.0	125
20	The impact of metal ions on photoinduced electron-transfer properties: four photochromic metal–organic frameworks based on a naphthalenediimide chromophore. CrystEngComm, 2018, 20, 2430-2439.	1.3	33
21	Structures and properties of five metal–organic frameworks based on 3,3′,5,5′-azoxybenzenetetracarboxylic acid and different secondary building units. Inorganica Chimica Acta, 2018, 471, 459-466.	1.2	2
22	Access to Multisubstituted Furan-3-carbothioates via Cascade Annulation of \hat{l}_{\pm} -Oxo Ketene Dithioacetals with Isoindoline-1,3-dione-Derived Propargyl Alcohols. Journal of Organic Chemistry, 2018, 83, 7648-7658.	1.7	12
23	A series of porous interpenetrating metal–organic frameworks based on fluorescent ligands for nitroaromatic explosive detection. Inorganic Chemistry Frontiers, 2018, 5, 1622-1632.	3.0	51
24	The Solvent Induced Interâ€Dimensional Phase Transformations of Cobalt Zeoliticâ€Imidazolate Frameworks. Chemistry - A European Journal, 2017, 23, 10638-10643.	1.7	95
25	Syntheses, structures and magnetism of four Ni(II)/Co(II) interpenetrating coordination polymers based on 1,4-bis(4-(imidazole-1-yl)benzyl)piperazine. Inorganica Chimica Acta, 2016, 451, 1-7.	1.2	9
26	Coordination Polymers with 2D →3D Interdigitated Arrays Based on 5â€(4â€(1Hâ€1,2,4â€Triazolâ€1â€yl)phenyl)â€1Hâ€tetrazole: Syntheses, Structures, and Properties. Zeitschrift Anorganische Und Allgemeine Chemie, 2016, 642, 724-729.	Fuo.6	4
27	Templated formation of porous Mn 2 O 3 octahedra from Mn-MIL-100 for lithium-ion battery anode materials. Materials and Design, 2016, 98, 319-323.	3.3	52
28	A series of polythreaded architectures based on a long flexible tetracarboxylate ligand and different N-donor ligands. Inorganica Chimica Acta, 2016, 447, 66-76.	1.2	13
29	Four novel coordination frameworks with high degree of diamondoid interpenetration containing scarce quadruple-stranded homo-axis helices and quintuple-stranded molecular braids. Inorganica Chimica Acta, 2016, 448, 42-50.	1.2	6
30	Three novel 3D pillared-layer molybdenum-oxide-based inorganic–organic hybrids constructed by tetranuclear Zn4/Co4/Mo4 metal clusters. Inorganica Chimica Acta, 2016, 445, 160-166.	1.2	7
31	Two novel molybdenum-oxide-based organic-inorganic hybrid frameworks exhibiting twofold interpenetrated hms networks. Inorganic Chemistry Communication, 2016, 69, 52-56.	1.8	9
32	Unusual self-penetrating and polycatenated coordination polymers based on the semi-rigid V-shaped ligand 4-(1-(4-(2H-tetrazol-5-yl)benzyl)-1H-pyrazol-3-yl)pyridine. Inorganica Chimica Acta, 2016, 451, 123-128.	1.2	4
33	A series of coordination polymers with 2D → 3D interdigitated structures self-assembled from 1,4-bis(4-(imidazole-1-yl)benzyl)piperazine. Inorganica Chimica Acta, 2016, 453, 385-393.	1.2	6
34	Metal nuclearity affects network connectivity: a series of highly connected metal–organic frameworks based on polynuclear metal clusters as secondary building units. CrystEngComm, 2016, 18, 8182-8193.	1.3	12
35	Two porous coordination polymers containing helix-based metal-organic nanotubes based on trigonal N-donor ligand. Inorganic Chemistry Communication, 2016, 72, 65-68.	1.8	13
36	Three-dimensional hierarchical nickel–cobalt–sulfide nanostructures for high performance electrochemical energy storage electrodes. Journal of Materials Chemistry A, 2016, 4, 18335-18341.	5.2	49

#	Article	IF	CITATIONS
37	Helical Coordination Polymers Based on A Tripodal Nâ€donor Ligand. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2016, 642, 128-133.	0.6	2
38	Syntheses, structures and properties of five entangled coordination polymers constructed with trigonal N-donor ligands. RSC Advances, 2016, 6, 5729-5738.	1.7	14
39	Syntheses and structures of three entangled coordination polymers based on the bifunctional ligand 4-((3-(pyridin-4-yl)-1H-pyrazol-1-yl)methyl)benzoic acid. Inorganica Chimica Acta, 2016, 444, 56-62.	1.2	2
40	Two novel 3D self-threading coordination polymers with CdSO4 topology: Syntheses, structures and properties. Inorganic Chemistry Communication, 2015, 61, 64-67.	1.8	4
41	An unusual 2D nanoscaled quadruple-layer metal–organic framework based on octanuclear cobalt clusters. Inorganic Chemistry Communication, 2015, 58, 108-112.	1.8	2
42	Syntheses and Structures of Two Novel Interdigitated Metalâ€Quinolone Complexes: [Cu ₂ (cfH) ₂ (bptc)(H ₂ 0)]·4H ₂ O and [Zn ₂ (levofH) ₂ (odpa)]·5.5H ₂ O. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2015, 641, 820-825.	0.6	6
43	An unusual three-dimensional homochiral metal saccharate based on inorganic helical chains. Inorganic Chemistry Communication, 2015, 56, 73-75.	1.8	3
44	Three octamolybdate-templated inorganic–organic hybrid frameworks based on dinuclear/tetranuclear metal-tetrazole clusters. Inorganica Chimica Acta, 2015, 437, 159-166.	1.2	12
45	A novel 3D self-penetrating framework self-assembled from interweaving double-helical chains. Inorganic Chemistry Communication, 2014, 50, 101-105.	1.8	3
46	Three interdigitated metal–quinolone complexes from self-assembly of mixed ligands and cadmium salts. Inorganica Chimica Acta, 2014, 409, 208-215.	1,2	15
47	An unusual 3D 8-connected entangled coordination network with coexistence of self-threading, polythreading and interpenetration. CrystEngComm, 2013, 15, 10435.	1.3	16
48	An unusual polythreaded coordination network self-assembled from 2D motifs with two distinct lateral arms. Inorganic Chemistry Communication, 2013, 38, 100-103.	1.8	11
49	Diastereoselective synthesis of ring-fused thiocarbamates bearing contiguous quaternary carbon centers. Tetrahedron Letters, 2013, 54, 3565-3567.	0.7	5
50	A series of 2D metal–quinolone complexes: Syntheses, structures, and physical properties. Journal of Solid State Chemistry, 2013, 198, 279-288.	1.4	24
51	Synthesis, Structure, and Characterization of a New Metalâ€Organic Framework containing <i>Meso</i> å€Helices. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2013, 639, 558-562.	0.6	4
52	Diaqua (5-carboxybenzene-1,3-dicarboxylato-κO1) [8-ethyl-5-oxo-2-(piperazin-4-ium-1-yl)-5,8-dihydropyrido [2,3-d monohydrate. Acta Crystallographica Section E: Structure Reports Online, 2013, 69, m127-m127.]pyrimidin	e-6 ₋ carboxylat
53	Suzuki–Miyaura Coupling of Aryl Iodides, Bromides, and Chlorides Catalyzed by Bis(thiazole) Pincer Palladium Complexes. Journal of Organic Chemistry, 2012, 77, 8332-8337.	1.7	40
54	Guest-induced expanding and shrinking porous modulation based on interdigitated metal–organic frameworks constructed by 4,4′-sulfonyldibenzoate and barium ions. CrystEngComm, 2012, 14, 2849.	1.3	33

#	Article	IF	Citations
55	Syntheses and structures of five 1D coordination polymers based on quinolone antibacterial agents and aromatic polycarboxylate ligands. Polyhedron, 2012, 42, 24-29.	1.0	13
56	A series of novel 1D coordination polymers constructed from metal–quinolone complex fragments linked by aromatic dicarboxylate ligands. Solid State Sciences, 2012, 14, 1203-1210.	1.5	9
57	From racemic compound to spontaneous resolution: A series of homochiral lanthanide coordination polymers constructed from presynthesized [Sb2(tart)2]2â^ metalloligands. Journal of Molecular Structure, 2012, 1018, 131-136.	1.8	8
58	Helicity controlled by the chirality of amino acid: two novel enantiopure chiral 3D architectures containing fivefold interwoven helices. CrystEngComm, 2012, 14, 3609.	1.3	45
59	Three 3D Metal–Quinolone Complexes Based on Trimetallic or Rod‧haped Secondary Building Units. European Journal of Inorganic Chemistry, 2012, 2012, 1783-1789.	1.0	8
60	Two three-dimensional pillared metal–olsalazine complexes based on infinite rod-shaped secondary building units. Inorganica Chimica Acta, 2012, 387, 283-288.	1.2	8
61	Two novel entangled metal–quinolone complexes with self-threading and polythreaded characters. Inorganica Chimica Acta, 2012, 385, 170-177.	1.2	21
62	An unprecedented 2Dâ†'3D polythreaded metal-lomefloxacin complex assembled from sidearm-containing 2D motifs. Inorganic Chemistry Communication, 2012, 15, 47-51.	1.8	9
63	A new type of polythreaded network self-assembled from sidearm-containing 2D bilayer motifs based on tetracarboxylate and N-heterocyclic multipyridyl ligand. Inorganic Chemistry Communication, 2012, 20, 157-161.	1.8	16
64	Bottom-up synthesis of three heterometallic coordination polymers with layered structures constructed from presynthesized [Sb2(tart)2]2â^' metalloligands. Solid State Sciences, 2012, 14, 62-71.	1.5	7
65	An unprecedented (5,12)-connected 3D self-penetrating metal–organic framework based on dinuclear barium clusters as building blocks. CrystEngComm, 2011, 13, 433-436.	1.3	39
66	An unprecedented 3-fold interpenetrated double-edged pseudo-diamondoid network containing exceptional 5-fold interlocking tri-flexure helices and 15-fold interwoven helices. CrystEngComm, 2011, 13, 4841.	1.3	34
67	Novel bis(azole) pincer palladium complexes: synthesis, structures and applications in Mizoroki–Heck reactions. Dalton Transactions, 2011, 40, 3601.	1.6	24
68	Enantiopure chiral coordination polymers of tetrahedral and octahedral cobalt(ii) alternate chains exhibiting slow magnetic relaxation behavior. Dalton Transactions, 2011, 40, 5680.	1.6	38
69	A series of novel entangled coordination frameworks with inherent features of self-threading, polyrotaxane and polycatenane. CrystEngComm, 2011, 13, 4988.	1.3	56
70	Unusual self-threading and interdigitated architectures self-assembled from long flexible ligands and d10 metal salts. CrystEngComm, 2011, 13, 7098.	1.3	35
71	A 3D interpenetrated rutile coordination framework formed by dinuclear cadmium clusters and 4,4 \hat{a} e²-sulfonyldibenzoate. Solid State Sciences, 2011, 13, 1573-1578.	1.5	10
72	Two Unprecedented Entangled Metal–Olsalazine Complexes with Coexistence of 2D → 3D Polycatenation and <i>meso</i> å€Helix. European Journal of Inorganic Chemistry, 2011, 2011, 4656-3663.	1.0	8

#	Article	IF	Citations
73	A novel self-penetrating metal–organic open framework containing unusual triple-stranded molecular braid and septuple helices. Journal of Molecular Structure, 2009, 936, 264-269.	1.8	15
74	Synthesis and Characterization of Two Extended High-dimensional Architectures Formed by Transition Metal–Glycine Complexes. Journal of Cluster Science, 2008, 19, 367-378.	1.7	5
75	Two (3,10)-Connected 2D Networks Based on Pentanuclear Metal Clusters as Building Blocks. European Journal of Inorganic Chemistry, 2008, 2008, 2610-2615. An interesting fourfold interpenetrating network constructed by polyoxometalates and	1.0	37
76	metalâ€"organic coordination complexes: <mml:math altimg="si3.gif" overflow="scroll" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mo stretchy="false">[</mml:mo><mml:mmoultiscripts><mml:mrow><mml:mtext>Cu</mml:mtext></mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><m< td=""><td>1.8</td><td>17</td></m<></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mmoultiscripts></mml:mrow></mml:math>	1.8	17
77	/> <mml:mrow><mml:mtext></mml:mtext></mml:mrow> <mml:mrow><mml:mn>5</mml:mn></mml:mrow> <mml:mrow><mml:mn>5</mml:mn></mml:mrow> <mml:mrow><mml:mn>6</mml:mn></mml:mrow> <mml:mrow><mml:mn>6</mml:mn></mml:mrow> <mml:mrow><mml:mn>6</mml:mn></mml:mrow> <mml:mrow><mml:mn>6</mml:mn></mml:mrow> <mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><</mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow>	l:none 0.8	9
78	Two New Three-Dimensional Networks Constructed on Polyoxovanadates. Australian Journal of Chemistry, 2007, 60, 871.	0.5	11
79	An Unprecedented Fivefold Interpenetrating Network Based on Polyoxometalate Building Blocks. Crystal Growth and Design, 2007, 7, 592-594.	1.4	52
80	A Series of New Organicâ^'Inorganic Molybdenum Arsenate Complexes Based on [(ZnO6)(As3O3)2Mo6O18]4-and [HxAs2Mo6O26](6-x)-Clusters as SBUs. Inorganic Chemistry, 2007, 46, 1563-1574.	1.9	87
81	From Chain to Network:Â Design and Analysis of Novel Organicâ'lnorganic Assemblies from Organically Functionalized Zinc-Substituted Polyoxovanadates and Zinc Organoamine Subunits. Inorganic Chemistry, 2007, 46, 3217-3230.	1.9	80
82	Exceptional Self-Penetrating Networks Containing Unprecedented Quintuple-Stranded Molecular Braid, 9-Fold Meso Helices, and 17-Fold Interwoven Helices. Inorganic Chemistry, 2007, 46, 4158-4166.	1.9	167
83	Syntheses and Structures of Three Unprecedented Metalâ^'Ciprofloxacin Complexes with Helical Character. Crystal Growth and Design, 2007, 7, 506-512.	1.4	124
84	Self-assembly of four three-dimensional reduced molybdenum(V) phosphates decorated with transitional metal complexes. Inorganica Chimica Acta, 2007, 360, 421-430.	1.2	27
85	Synthesis and characterization of two novel high-dimensional extended structures based on Keggin-type polyoxometalates and potassium–glycine complex subunits. Journal of Molecular Structure, 2007, 837, 237-244.	1.8	17
86	Synthesis and characterization of a novel two-dimensional layered vanadate complex containing double helical chains. Journal of Molecular Structure, 2007, 840, 53-58.	1.8	10
87	Wells–Dawson anion, a useful building block to construct one-dimensional chain as a chelate ligand coordinating with transition metal cations. Journal of Molecular Structure, 2007, 841, 28-33.	1.8	16
88	Syntheses and characterizations of two novel networks formed by Keggin clusters and copper–organonitrogen complexes. Journal of Molecular Structure, 2007, 843, 87-94.	1.8	8
89	Two novel inorganic–organic hybrids based on saturated Wells–Dawson polyoxoanion and copper–organonitrogen coordination polymer. Journal of Molecular Structure, 2007, 837, 23-29.	1.8	30
90	Syntheses and characterization of three hybrid materials based on polymeric copper complexes and saturated Keggin polyoxoanions. Transition Metal Chemistry, 2007, 32, 950-959.	0.7	17

#	Article	IF	Citations
91	Synthesis and Characterization of a Novel 3D Organic–Inorganic Hybrid Framwork Templated by Keggin Anions. Journal of Cluster Science, 2007, 18, 909-920.	1.7	6
92	Self-Assembly of Extended High-Dimensional Architectures from Anderson-type Polyoxometalate Clusters. Crystal Growth and Design, 2006, 6, 1107-1112.	1.4	130
93	Synthesis and structure of a novel one-dimensional vanadate constructed from tetravanadate clusters linked via copper–organic complex moieties: [{Cu(phen)(H2O)}2V4O12]. Journal of Coordination Chemistry, 2006, 59, 827-835.	0.8	4
94	A three-dimensional supramolecular framework built from two-dimensional wave-shaped layers. Journal of Coordination Chemistry, 2006, 59, 883-890.	0.8	2
95	Structural effects of lone-pair electrons: a novel three-dimensional, open-framework metal selenite constructed from {CoSeO3}n double helical chains linked via ethylenediamine pillars. Journal of Coordination Chemistry, 2006, 59, 395-402.	0.8	7
96	A Bridge between Pillared-Layer and Helical Structures: A Series of Three-Dimensional Pillared Coordination Polymers with Multiform Helical Chains. Chemistry - A European Journal, 2006, 12, 6528-6541.	1.7	230
97	Chiral 3D Architectures with Helical Channels Constructed from Polyoxometalate Clusters and Copper–Amino Acid Complexes. Angewandte Chemie - International Edition, 2006, 45, 904-908.	7.2	564
98	Syntheses and structures of two novel inorganic–organic hybrid octamolybdates: [H2enMe]2[Mo8O26]·2H2O and [Ni(2,2′-bpy)3]2[Î′-Mo8O26]. Journal of Molecular Structure, 2005, 738, 217-225.	1.8	37
99	Synthesis and structure of a novel three-dimensional metal selenite containing multidirectional intersecting double helical chains: [Fe2(H2O)4(SeO3)2]. Journal of Molecular Structure, 2005, 740, 249-253.	1.8	7
100	The chiral structure induced by lone-pair electrons: syntheses and characterization of two novel chiral rare-earth selenites containing homochiral helical chains. Journal of Molecular Structure, 2005, 733, 69-75.	1.8	9
101	The first example of a structure containing both α- and β-octamolybdates: synthesis and structure of a new three-dimensional supramolecular network [Co(2,2′-bipy)3]4[Mo8O26]2·5H2O (2,2′-bipy=2,2′-bipyridine). Journal of Molecular Structure, 2005, 741, 149-153.	1.8	28
102	Organic–inorganic hybrids with three-dimensional supramolecular channels based on Anderson type polyoxoanions. Journal of Molecular Structure, 2005, 743, 117-123.	1.8	33
103	Synthesis and characterization of two new extended structures based on Anderson-type polyoxoanions. Journal of Molecular Structure, 2005, 751, 184-189.	1.8	23
104	Self-assembly of a novel 3D open framework from Anderson-type polyoxoanions. Inorganic Chemistry Communication, 2005, 8, 267-270.	1.8	27
105	Open-Framework Polar Compounds: Synthesis and Characterization ofRare-Earth Polyoxometalates (C6NO2H5)2[Ln(H2O)5(CrMo6H6O24)]·0.5H2O (Ln = Ce and La). European Journal of Inorganic Chemistry, 2005, 2005, 854-859.	1.0	68
106	Rationally Designed, Polymeric, Extended Metal-Ciprofloxacin Complexes. Chemistry - A European Journal, 2005, 11, 6673-6686.	1.7	131
107	Synthesis and crystal structures of two nickel coordination polymers generated from asymmetric malate ligand. Journal of Solid State Chemistry, 2005, 178, 776-781.	1.4	9
108	Electrochemistry of ITO electrode modified by multilayer ultrathin films based on crown-shaped polyoxomolybdate. Journal of Colloid and Interface Science, 2005, 285, 435-442.	5.0	17

#	Article	IF	CITATIONS
109	Synthesis and Characterization of a Novel Organic/Inorganic Hybrid Based on Octamolybdates and Benzimidazole Molecules [Hbenzimi]4 [(benzimi)2Mo8O26] \hat{A} · 2H2O (benzimi = benzimidazole). Transition Metal Chemistry, 2005, 30, 873-878.	0.7	11
110	Self-Assembly of a Series of Extended Architectures Based on Polyoxometalate Clusters and Silver Coordination Complexes. Inorganic Chemistry, 2005, 44, 6062-6070.	1.9	189
111	A series of new polyoxoanion-based inorganic-organic hybrids: (C6NO2H5)[(H2O)4(C6NO2H5)Ln(CrMo6H6O24)]·4H2O (Ln = Ce, Pr, La and Nd) with a chiral layer structure. New Journal of Chemistry, 2005, 29, 667.	1.4	75
112	A Novel Pillar-Layered OrganicⰒInorganic Hybrid Based on Lanthanide Polymer and Polyomolybdate Clusters:  New Opportunity toward the Design and Synthesis of Porous Framework. Crystal Growth and Design, 2005, 5, 65-67.	1.4	146
113	Hydrothermal synthesis and characterization of a novel polyoxometallate-templated three-dimensional supramolecular network. Journal of Coordination Chemistry, 2004, 57, 615-626.	0.8	4
114	Novel hydrogen-bonded three-dimensional network complexes containing cobalt-pyridine-2,6-dicarboxylic acid. Transition Metal Chemistry, 2004, 29, 212-215.	0.7	25
115	Hydrothermal synthesis and crystal structure of a three-dimensional metal selenite containing double helical chains: Fe3(H2O)(SeO3)3. Journal of Solid State Chemistry, 2004, 177, 2699-2704.	1.4	11
116	Synthesis and Structure of an Unprecedented Layered Vanadate Complex Containing Double-Helical Chains: [{CollI(phen)2}2V8O23]. European Journal of Inorganic Chemistry, 2004, 2004, 1385-1388.	1.0	45
117	Hydrothermal synthesis and crystal structure of a novel layered vanadate complex containing double helical chains: [{Zn(2,2′-bpy)}2V8O21](2,2′-bpy=2,2′-bipyridine). Journal of Molecular Structure, 2004, 69123-131.	911.8	16
118	Hydrothermal synthesis and crystal structure of a new layered titanium vanadate decorated with organonitrogen ligand: [Ti(2,2′-bpy)V2O7]. Journal of Molecular Structure, 2004, 692, 107-114.	1.8	9
119	Hydrothermal synthesis and crystal structure of a novel one-dimensional arsenic vanadate decorated with organonitrogen ligand: [H3V3O26(AsO4)4(phen)8(H2O)2]·2H2O (phen=phenanthroline). Inorganica Chimica Acta, 2004, 357, 2477-2482.	1.2	21
120	Hydrothermal synthesis and characterization of an unprecedented Î-type octamolybdate: [{Ni(phen)2}2(Mo8O26)]. Inorganica Chimica Acta, 2004, 357, 2525-2531.	1.2	73
121	A novel three-dimensional metal–organic network, Zn2(btec)(pipz)(H2O) (btec=1,2,4,5-benzenetetracarboxylate, pipz=piperazine), with blue fluorescent emission. Inorganica Chimica Acta, 2004, 357, 3155-3161.	1.2	53
122	A novel one-dimensional arsenic vanadate decorated with a transition metal complex: [Cu(2,2′-bpy)](VO2)(AsO4) (2,2′-bpy=2,2′-bipyridine). Journal of Molecular Structure, 2004, 689, 81-88.	1.8	10
123	The helical structure induced by metal–organic complexes: synthesis and characterization of a novel layered vanadate complex containing double helical chains. Journal of Molecular Structure, 2004, 707, 77-81.	1.8	12
124	A novel one-dimensional vanadium arsenate grafted with the directly coordinated organonitrogen ligands: [(VO)2(HAsO4)2(phen)2] (phen=phenanthroline). Inorganic Chemistry Communication, 2004, 7, 128-130.	1.8	13
125	A novel chain-like polymer constructed from heteropolyanions covalently linked by lanthanide cations: (C 5 H 9 NO 2) 2 [La(H 2 O) 7 CrMo 6 H 6 O 24] $\hat{A} \cdot 11$ H 2 O (Proline=C 5 H 9 NO 2). Inorganic Chemistry Communication, 2004, 7, 356-358.	1.8	40
126	Dehydrogenative coupling of 2,2 $\hat{a} \in 2$ -bipyridine: hydrothermal synthesis and crystal structure of a novel polyoxovanadate decorated with the 2,2 $\hat{a} \in 2$;6 $\hat{a} \in 2$,2 $\hat{a} \in 2$;6 $\hat{a} \in 2$;7 $\hat{a} \in 2$;7 $\hat{a} \in 2$;7 $\hat{a} \in 2$;8 $\hat{a} \in 2$;9 $\hat{a} \in 2$ 9 $\hat{a} \in$	nistry	42

#	Article	IF	CITATION
127	Synthesis of novel copper compounds containing isonicotinic acid and/or 2,6-pyridinedicarboxylic acid: third-order nonlinear optical properties. Journal of Coordination Chemistry, 2004, 57, 1079-1087.	0.8	31
128	Hydrothermal synthesis and crystal structure of a metal–organic coordination polymer with double-helical structure: [Fe(phen)(ipt)]n (ipt=isophthalate, phen=1,10-phenanthroline). Inorganic Chemistry Communication, 2003, 6, 1347-1349.	1.8	19
129	A layered vanadium arsenate network decorated with the directly coordinated organonitrogen ligands: [V4O7(HAsO4)2(o-phen)2] (o-phen=o-phenanthroline). Journal of Solid State Chemistry, 2003, 175, 146-151.	1.4	16
130	Hydrothermal synthesis and crystal structure of a three-dimensional vanadium tellurite V4Te4O18. Journal of Solid State Chemistry, 2003, 176, 159-164.	1.4	27
131	Hydrothermal synthesis and crystal structure of a novel polyoxomolybdate with the hydroxylated N-heterocycle ligand: Mo2O5(ophen)2 (Hophen=2-hydroxy-1,10-phenanthroline). Journal of Molecular Structure, 2003, 659, 13-21.	1.8	16
132	Two Novel Vanadium Tellurites Covalently Bonded with Metalâ^'Organic Complex Moieties:ÂM(phen)V2TeO8(M = Cu, Ni). Inorganic Chemistry, 2003, 42, 7652-7657.	1.9	52