List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9388309/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Multifunctional Bismuthâ€Doped Nanoporous Silica Glass: From Blueâ€Green, Orange, Red, and White Light Sources to Ultraâ€Broadband Infrared Amplifiers. Advanced Functional Materials, 2008, 18, 1407-1413.	7.8	252
2	Updated definition of glass-ceramics. Journal of Non-Crystalline Solids, 2018, 501, 3-10.	1.5	248
3	Transparent glass-ceramics functionalized by dispersed crystals. Progress in Materials Science, 2018, 97, 38-96.	16.0	236
4	Long persistent and photo-stimulated luminescence in Cr3+-doped Zn–Ga–Sn–O phosphors for deep and reproducible tissue imaging. Journal of Materials Chemistry C, 2014, 2, 2657.	2.7	208
5	Thermally drawn advanced functional fibers: New frontier of flexible electronics. Materials Today, 2020, 35, 168-194.	8.3	153
6	Ultrasensitive Polarized Up-Conversion of Tm ³⁺ –Yb ³⁺ Doped β-NaYF ₄ Single Nanorod. Nano Letters, 2013, 13, 2241-2246.	4.5	147
7	Simultaneous Tailoring of Phase Evolution and Dopant Distribution in the Glassy Phase for Controllable Luminescence. Journal of the American Chemical Society, 2010, 132, 17945-17952.	6.6	137
8	Ligandâ€Driven Wavelengthâ€Tunable and Ultraâ€Broadband Infrared Luminescence in Singleâ€Ionâ€Doped Transparent Hybrid Materials. Advanced Functional Materials, 2009, 19, 2081-2088.	7.8	131
9	Tailoring of the trap distribution and crystal field in Cr3+-doped non-gallate phosphors with near-infrared long-persistence phosphorescence. NPG Asia Materials, 2015, 7, e180-e180.	3.8	127
10	A strategy for developing near infrared long-persistent phosphors: taking MAlO3:Mn4+,Ge4+ (M = La,) Tj ETQqO	0.0.rgBT /C)verlock 10 107

11	Preparation of functional nanomaterials with femtosecond laser ablation in solution. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2013, 17, 50-68.	5.6	94
12	Broadband optical amplification in Bi-doped germanium silicate glass. Applied Physics Letters, 2007, 91, .	1.5	93
13	Topological Engineering of Glass for Modulating Chemical State of Dopants. Advanced Materials, 2014, 26, 7966-7972.	11.1	89
14	Efficient Dual-Modal NIR-to-NIR Emission of Rare Earth Ions Co-doped Nanocrystals for Biological Fluorescence Imaging. Journal of Physical Chemistry Letters, 2013, 4, 402-408.	2.1	85
15	Anomalous NIR Luminescence in Mn ²⁺ â€Doped Fluoride Perovskite Nanocrystals. Advanced Optical Materials, 2014, 2, 670-678.	3.6	80
16	Intense Infrared Luminescence in Transparent Glass-Ceramics Containing Î ² -Ga2O3:Ni2+Nanocrystals. Journal of Physical Chemistry C, 2007, 111, 7335-7338.	1.5	78
17	Selfâ€Limited Nanocrystallizationâ€Mediated Activation of Semiconductor Nanocrystal in an Amorphous Solid. Advanced Functional Materials, 2013, 23, 5436-5443.	7.8	73
18	Mesoscale engineering of photonic glass for tunable luminescence. NPG Asia Materials, 2016, 8, e318-e318.	3.8	72

#	Article	IF	CITATIONS
19	Simple synthesis of ultra-small nanodiamonds with tunable size and photoluminescence. Carbon, 2013, 62, 374-381.	5.4	67
20	Comment on "Upconversion and Downconversion Fluorescent Graphene Quantum Dots: Ultrasonic Preparation and Photocatalysis― ACS Nano, 2012, 6, 6530-6531.	7.3	59
21	One-step solvothermal preparation of TiO2/C composites and their visible-light photocatalytic activities. Applied Surface Science, 2008, 254, 3762-3766.	3.1	57
22	Enhanced broadband near-infrared luminescence and optical amplification in Yb–Bi codoped phosphate glasses. Applied Physics Letters, 2008, 92, 101121.	1.5	56
23	Carbon nanodots with strong nonlinear optical response. Carbon, 2014, 69, 638-640.	5.4	56
24	Roomâ€Temperature Wavelengthâ€Tunable Singleâ€Band Upconversion Luminescence from Yb ³⁺ /Mn ²⁺ Codoped Fluoride Perovskites ABF ₃ . Advanced Optical Materials, 2016, 4, 798-806.	3.6	55
25	Tailorable Upconversion White Light Emission from Pr ³⁺ Singleâ€Doped Glass Ceramics via Simultaneous Dualâ€Lasers Excitation. Advanced Optical Materials, 2018, 6, 1700787.	3.6	51
26	Broadband optical amplification in silicate glass-ceramic containing β-Ga_2O_3:Ni^2+ nanocrystals. Optics Express, 2007, 15, 5477.	1.7	50
27	Structured Scintillators for Efficient Radiation Detection. Advanced Science, 2022, 9, e2102439.	5.6	50
28	Transparent Ni2+-doped lithium aluminosilicate glass–ceramics with broadband infrared luminescence. Journal of Alloys and Compounds, 2008, 457, 506-509.	2.8	44
29	Energy transfer between Cr^3+ and Ni^2+ in transparent silicate glass ceramics containing Cr^3+/Ni^2+ co-doped ZnAl_2O_4 nanocrystals. Optics Express, 2008, 16, 2508.	1.7	44
30	Fabrication and Characterization of Glassâ€Ceramic Fiberâ€Containing Cr ³ Â ⁺ Ââ€Doped ZnAl ₂ O ₄ Nanocrystals. Journal of the American Ceramic Society, 2015, 98, 2772-2775.	1.9	44
31	Transition Metal Doped Smart Glass with Pressure and Temperature Sensitive Luminescence. Advanced Optical Materials, 2018, 6, 1800881.	3.6	43
32	Ni^2+ doped glass ceramic fiber fabricated by melt-in-tube method and successive heat treatment. Optics Express, 2015, 23, 28258.	1.7	42
33	Anti-Stokes Fluorescent Probe with Incoherent Excitation. Scientific Reports, 2014, 4, 4059.	1.6	41
34	Transition metal ion activated near-infrared luminescent materials. Progress in Materials Science, 2022, 129, 100973.	16.0	39
35	Enhanced broadband near-infrared luminescence in transparent silicate glass ceramics containing Yb3+ ions and Ni2+-doped LiGa5O8 nanocrystals. Applied Physics Letters, 2008, 92, .	1.5	38
36	Multifunctional tunable ultra-broadband visible and near-infrared luminescence from bismuth-doped germanate glasses. Journal of Applied Physics, 2013, 113, 083503.	1.1	38

#	Article	IF	CITATIONS
37	Transparent Ni2+-doped silicate glass ceramics for broadband near-infrared emission. Optical Materials, 2008, 30, 1900-1904.	1.7	37
38	Broadband near-infrared emission from transparent Ni2+-doped silicate glass ceramics. Journal of Applied Physics, 2007, 102, 063106.	1.1	36
39	Space-selective control of luminescence inside the Bi-doped mesoporous silica glass by a femtosecond laser. Journal of Materials Chemistry, 2009, 19, 4603.	6.7	36
40	Luffa-Sponge-Like Glass–TiO ₂ Composite Fibers as Efficient Photocatalysts for Environmental Remediation. ACS Applied Materials & Interfaces, 2013, 5, 7527-7536.	4.0	36
41	Gain-guided soliton: Scaling repetition rate of passively modelocked Yb-doped fiber lasers to 125 GHz. Optics Express, 2019, 27, 10438.	1.7	35
42	Size-induced crystal field parameter change and tunable infrared luminescence in Ni ²⁺ -doped high-gallium nanocrystals embedded glass ceramics. Nanotechnology, 2008, 19, 015702.	1.3	34
43	Bandwidth broadening of near-infrared emission through nanocrystallization in Bi/Ni co-doped glass. Optics Express, 2012, 20, 8675.	1.7	34
44	Broadband near-infrared emission from Bi-doped aluminosilicate glasses. Journal of Materials Research, 2007, 22, 1435-1438.	1.2	33
45	Controllable fabrication of novel all solid-state PbS quantum dot-doped glass fibers with tunable broadband near-infrared emission. Journal of Materials Chemistry C, 2017, 5, 7927-7934.	2.7	33
46	Unusual luminescence quenching and reviving behavior of Bi-doped germanate glasses. Optics Express, 2011, 19, 23436.	1.7	32
47	Persistent luminescence of SrAl2O4: Eu2+, Dy3+, Cr3+ phosphors in the tissue transparency window. Materials Chemistry and Physics, 2014, 147, 772-776.	2.0	31
48	Broadband infrared luminescence from transparent glass–ceramics containing Ni2+-doped β -Ga2O3 nanocrystals. Applied Physics B: Lasers and Optics, 2007, 87, 697-699.	1.1	30
49	Cyan-white-red luminescence from europium doped Al_2O_3-La_2O_3-SiO_2 glasses. Optics Express, 2008, 16, 6731.	1.7	30
50	Glass-ceramics for photonic devices. Journal of the Ceramic Society of Japan, 2012, 120, 458-466.	0.5	30
51	Anisotropically Enhanced Nonlinear Optical Properties of Ensembles of Gold Nanorods Electrospun in Polymer Nanofiber Film. ACS Applied Materials & Interfaces, 2016, 8, 2048-2053.	4.0	29
52	Pressureless Crystallization of Glass for Transparent Nanoceramics. Advanced Science, 2019, 6, 1901096.	5.6	29
53	Effect of UV irradiation on photoluminescence of carbon dots. Optical Materials Express, 2014, 4, 213.	1.6	28
54	Ultrabroadband near-infrared luminescence and efficient energy transfer in Bi and Bi/Ho co-doped thin films. Journal of Materials Chemistry C, 2014, 2, 2482.	2.7	28

#	Article	IF	CITATIONS
55	Enhanced broadband near-infrared luminescence of Bi-doped oxyfluoride glasses. Optics Express, 2012, 20, 29105.	1.7	26
56	Highly efficient up-conversion luminescence in BaCl ₂ :Er ³⁺ phosphors via simultaneous multiwavelength excitation. Applied Physics Express, 2015, 8, 032301.	1.1	26
57	Enhanced broadband near-infrared luminescence from transparent Yb^3+/Ni^2+ codoped silicate glass ceramics. Optics Express, 2008, 16, 1879.	1.7	25
58	Infrared luminescence and amplification properties of Bi-doped GeO2â^'Ga2O3â^'Al2O3 glasses. Journal of Applied Physics, 2008, 103, 103532.	1.1	25
59	Multi-photon absorption upconversion luminescence of a Tb^3+-doped glass excited by an infrared femtosecond laser. Optics Express, 2007, 15, 6883.	1.7	24
60	Space-selective crystallization of glass induced by femtosecond laser irradiation. Journal of Non-Crystalline Solids, 2014, 383, 91-96.	1.5	24
61	<i>In-Situ</i> Phase Transition Control in the Supercooled State for Robust Active Glass Fiber. ACS Applied Materials & amp; Interfaces, 2017, 9, 20664-20670.	4.0	24
62	Enhanced upconversion luminescence of transparent Eu^3+-doped glass-ceramics containing nonlinear optical microcrystals. Optics Letters, 2007, 32, 653.	1.7	23
63	Transparent Ni2+-doped lithium-alumino-silicate glass-ceramics for broadband near-infrared light source. Journal Physics D: Applied Physics, 2007, 40, 2472-2475.	1.3	23
64	Heterogeneous-surface-mediated crystallization control. NPG Asia Materials, 2016, 8, e245-e245.	3.8	23
65	Fast–Slow Red Upconversion Fluorescence Modulation from Ho ³⁺ â€Doped Glass Ceramics upon Twoâ€Wavelength Excitation. Advanced Optical Materials, 2017, 5, 1600554.	3.6	23
66	Ultraâ€Broadband Nearâ€Infrared Luminescence of <scp>Ni²⁺</scp> : <scp>ZnO–Al₂O₃–SiO₂</scp> Nanocomposite Glasses Prepared by Sol–Gel Method. Journal of the American Ceramic Society, 2011, 94, 2902-2905.	1.9	22
67	Topological engineering of doped photonic glasses. MRS Bulletin, 2017, 42, 34-38.	1.7	22
68	Enhanced near-infrared emission from Ni2+ in Cr3+â^•Ni2+ codoped transparent glass ceramics. Applied Physics Letters, 2008, 92, .	1.5	21
69	Quantum Cutting in Luminescent Glasses and Glass Ceramics. International Journal of Applied Glass Science, 2012, 3, 299-308.	1.0	21
70	Transparent niobate glassâ€ceramics for optical limiting. Journal of the American Ceramic Society, 2019, 102, 3965-3971.	1.9	21
71	One-pot synthesis of luminescent hydrophilic silicon nanocrystals. RSC Advances, 2012, 2, 8254.	1.7	20
72	Energyâ€Transfer Modulation for Enhanced Photocatalytic Activity of Nearâ€Infrared Upconversion Photocatalyst. Journal of the American Ceramic Society, 2015, 98, 136-140.	1.9	20

#	Article	IF	CITATIONS
73	Multiscale structured glass for advanced light management. Journal of Materials Chemistry C, 2017, 5, 8091-8096.	2.7	20
74	Photoinduced luminescent carbon nanostructures with ultra-broadly tailored size ranges. Nanoscale, 2013, 5, 12092.	2.8	19
75	Flexible Fiber Probe for Efficient Neural Stimulation and Detection. Advanced Science, 2020, 7, 2001410.	5.6	19
76	Optical properties of transparent alkali gallium silicate glass-ceramics containing Ni2+-doped β-Ga2O3 nanocrystals. Journal of Materials Research, 2007, 22, 3410-3414.	1.2	18
77	Do Eu dopants prefer the precipitated LaF ₃ nanocrystals in glass ceramics?. Physica Status Solidi - Rapid Research Letters, 2012, 6, 487-489.	1.2	18
78	Enhanced broadband near-infrared luminescence in Bi-doped glasses by co-doping with Ag. Journal of Applied Physics, 2013, 113, 183506.	1.1	18
79	Regulation of structure rigidity for improvement of the thermal stability of near-infrared luminescence in Bi-doped borate glasses. Optics Express, 2013, 21, 27835.	1.7	18
80	Hybrid coordination-network-engineering for bridging cascaded channels to activate long persistent phosphorescence in the second biological window. Scientific Reports, 2016, 6, 20275.	1.6	18
81	Near-infrared wavelength-dependent nonlinear transmittance tailoring in glass ceramics containing Er3+:LaF3 nanocrystals. Journal of Materials Chemistry C, 2016, 4, 6707-6712.	2.7	18
82	Transition metals as optically active dopants in glass-ceramics. Applied Physics Letters, 2020, 116, .	1.5	18
83	Allâ€Inorganic Transparent Composite Materials for Optical Limiting. Advanced Optical Materials, 2020, 8, 1902143.	3.6	18
84	Enhanced Multiphoton Absorption Induced Luminescence in Transparent Sm ³⁺ -doped Ba ₂ TiSi ₂ O ₈ Glass-ceramics. Journal of Physical Chemistry C, 2007, 111, 17118-17121.	1.5	17
85	Enhanced broadband excited upconversion luminescence in Ho-doped glasses by codoping with bismuth. Optics Letters, 2014, 39, 3022.	1.7	17
86	Bismuthâ€Doped Multicomponent Optical Fiber Fabricated by Meltâ€inâ€Tube Method. Journal of the American Ceramic Society, 2016, 99, 856-859.	1.9	17
87	Tunable luminescence of CaO-Al_2O_3-GeO_2 glasses. Optics Express, 2007, 15, 16980.	1.7	16
88	Multiphase Transition toward Colorless Bismuth–Germanate Scintillating Glass and Fiber for Radiation Detection. ACS Applied Materials & Interfaces, 2020, 12, 17752-17759.	4.0	16
89	Erâ€Activated Hybridized Glass Fiber for Laser and Sensor in the Extended Wavebands. Advanced Optical Materials, 2021, 9, 2101394.	3.6	16
90	Space-selective precipitation of ZnO crystals in glass by using high repetition rate femtosecond laser irradiation. Optics Express, 2014, 22, 17908.	1.7	15

#	Article	IF	CITATIONS
91	Luminescence properties of nickel and bismuth co-doped barium aluminosilicate glasses. Journal of Alloys and Compounds, 2008, 456, 239-242.	2.8	14
92	Glass composite as robust UV absorber for biological protection. Optical Materials Express, 2016, 6, 531.	1.6	14
93	Simultaneous control of the chemical state and local environment of Cr dopant in glass for extended emission. Journal of the American Ceramic Society, 2018, 101, 159-166.	1.9	14
94	Transparent Ni 2+ -Doped MgO-Al 2 O 3 -SiO 2 Glass Ceramics with Broadband Infrared Luminescence. Chinese Physics Letters, 2006, 23, 2778-2781.	1.3	13
95	Volume plasmon of bismuth nanoparticles. Solid State Communications, 2009, 149, 111-114.	0.9	13
96	Pre-perovskite nanofiber: a new direct-band gap semiconductor with green and near infrared photoluminescence. RSC Advances, 2013, 3, 5453.	1.7	13
97	Crystallization control toward colorless cerium-doped scintillating glass. Optics Express, 2018, 26, 20582.	1.7	13
98	Er ³⁺ â€doped antimonyâ€silica glass and fiber for broadband optical amplification. Journal of the American Ceramic Society, 2021, 104, 5584-5592.	1.9	13
99	Electron energy loss spectroscopy of Na in Na, Na ₂ O, and silicate glasses. Journal of Materials Research, 2008, 23, 2467-2471.	1.2	12
100	Orangeâ€red upconversion luminescence of Sm ³⁺ â€doped ZnOâ€B ₂ O ₃ â€5iO ₂ glass by infrared femtosecond laser irradiation. Journal of the Society for Information Display, 2009, 17, 507-510.	0.8	12
101	Suppression of Lanthanide Clustering in Glass by Network Topological Constraints. Journal of the American Ceramic Society, 2015, 98, 2976-2979.	1.9	12
102	Scalable In-Fiber Manufacture of Functional Composite Particles. ACS Nano, 2018, 12, 11130-11138.	7.3	12
103	Local Chemistry Engineering in Doped Photonic Glass for Optical Pulse Generation. Advanced Optical Materials, 2019, 7, 1801413.	3.6	12
104	Enhanced luminescence from transparent Ni2+-doped MgO–Al2O3–SiO2 glass ceramics by Ga2O3 addition. Journal of Physics and Chemistry of Solids, 2008, 69, 891-894.	1.9	11
105	Greatly enhanced broadband near-infrared emission due to energy transfer from Cr ³⁺ to Ni ²⁺ in transparent magnesium aluminosilicate glass ceramics. Journal of Materials Research, 2009, 24, 310-315.	1.2	11
106	Core@dual‧hell Nanoporous <scp><scp>SiO</scp></scp> ₂ – <scp><scp>TiO</scp>₂ Composite Fibers with High Flexibility and Its Photocatalytic Activity. Journal of the American Ceramic Society, 2014, 97, 1044 1051</scp>	1.9	11
107	Manipulating Nonlinear Optical Response via Domain Control in Nanocrystalâ€inâ€Glass Composites. Advanced Materials, 2021, 33, e2006482.	11.1	11
108	Tunable luminescence from Sm ³⁺ , Ce ³⁺ codoped Al ₂ O ₃ –La ₂ O ₃ –SiO ₂ glasses for white light emission. Journal of Materials Research, 2009, 24, 1730-1734.	1.2	10

#	Article	IF	CITATIONS
109	Laser-Induced Optical Property Changes Inside Bi-Doped Glass. IEEE Photonics Technology Letters, 2009, 21, 386-388.	1.3	10
110	Micro-modification of luminescence property in Ag+-doped phosphate glass using femtosecond laser irradiation. Journal of Non-Crystalline Solids, 2014, 383, 161-164.	1.5	10
111	Coordination Geometry Engineering in a Doped Disordered Matrix for Tunable Optical Response. Journal of Physical Chemistry C, 2019, 123, 29343-29352.	1.5	10
112	Light emission of Cu+doped porous silica glass for volumetric three-dimensional solid state display. Journal Physics D: Applied Physics, 2007, 40, 7339-7342.	1.3	9
113	Ultrafast modification of elements distribution and local luminescence properties in glass. Journal of Non-Crystalline Solids, 2012, 358, 1185-1189.	1.5	9
114	Localized control of light–matter interactions by using nanoscale asymmetric TiO ₂ . Nanotechnology, 2012, 23, 465704.	1.3	9
115	Raman spectroscopic investigation on femtosecond laser induced residual stress and element distribution in bismuth germanate glasses. Journal of Raman Spectroscopy, 2013, 44, 307-311.	1.2	9
116	Role of intrinsic defects on the persistent luminescence of pristine and Mn doped ZnGa2O4. Journal of Applied Physics, 2019, 125, .	1.1	9
117	Ultra-broadband infrared luminescence of Bi-doped thin-films for integrated optics. Optics Express, 2013, 21, 18532.	1.7	8
118	Crystallization control in Ni 2+ â€doped glassâ€ceramics for broadband nearâ€infrared luminesce. Journal of the American Ceramic Society, 2020, 103, 2569-2574.	1.9	8
119	Regulating the Bi NIR luminescence behaviours in fluorine and nitrogen co-doped germanate glasses. Materials Advances, 2021, 2, 4743-4751.	2.6	8
120	Tunable Infrared Luminescence and Optical Amplification in PbS Doped Glasses. Chinese Physics Letters, 2008, 25, 2518-2520.	1.3	7
121	Elemental redistribution behavior in tellurite glass induced by high repetition rate femtosecond laser irradiation. Journal of Alloys and Compounds, 2014, 601, 212-216.	2.8	7
122	Fullâ€Inorganic Microâ€Fiber Probe for Realâ€Time Radiation Monitoring. Advanced Materials Technologies, 2021, 6, .	3.0	7
123	Enhanced Capture of Broadband Solarâ€Blind UV Light via Introducing Alkaliâ€Metal Ions (Li + , Na + , and) Tj E	[Qq] 1 0.]	784314 rgBT 7
124	Energy transfer between Cr3+ and Ni2+ in transparent glass ceramics containing β-Ga2O3 nanocrystals. Journal of Applied Physics, 2009, 106, 053527.	1.1	6
125	Superbroadband near-infrared emission from Cr–Ni co-doped transparent forsterite glass ceramics. Journal Physics D: Applied Physics, 2010, 43, 095401.	1.3	6
126	Design and fabrication of lutetium aluminum silicate glass and nanostructured glass for radiation detection. Journal of the American Ceramic Society, 2021, 104, 2030-2038.	1.9	6

#	Article	IF	CITATIONS
127	In situ and tunable structuring of semiconductor-in-glass transparent composite. IScience, 2021, 24, 101984.	1.9	6
128	Nanostructured Glass Composite for Self alibrated Radiation Dose Rate Detection. Advanced Optical Materials, 0, , 2100751.	3.6	6
129	Broadband near-infrared emission in Bi-Tm co-doped germanium silicate glasses. Journal of Non-Crystalline Solids, 2022, 583, 121470.	1.5	6
130	Flexible and thermally stable SiO2–TiO2 composite micro fibers with hierarchical nano-heterostructure. RSC Advances, 2013, 3, 20132.	1.7	5
131	Origin of structural relaxation dependent spectroscopic features of bismuth-activated glasses. Optics Express, 2014, 22, 15924.	1.7	5
132	Precipitation of bismuth nanoparticles and elements distribution in bismuth germanate glass induced by femtosecond laser. Materials Letters, 2014, 128, 204-207.	1.3	5
133	Femtosecond laser induced space-selective precipitation of a deep-ultraviolet nonlinear BaAlBO3F2 crystal in glass. Journal of Non-Crystalline Solids, 2015, 420, 17-20.	1.5	5
134	A chip-based microcavity derived from multi-component tellurite glass. Journal of Materials Chemistry C, 2015, 3, 5141-5144.	2.7	5
135	Fabrication of microchannels by space-selective control of phase separation in glass. Optics Letters, 2016, 41, 3371.	1.7	5
136	Selfâ€limited crystallizationâ€mediated removal of hydroxyl in glass. Journal of the American Ceramic Society, 2017, 100, 4622-4628.	1.9	5
137	Broadband NIR emission from transparent fluorosilicate glass-ceramics containing Rb2SiF6:Ni2+ nanocrystals. Journal of Non-Crystalline Solids, 2019, 518, 66-69.	1.5	5
138	Midâ€infrared luminesce of ZnS:Cr ²⁺ â€glass composite and fiber. Journal of the American Ceramic Society, 2020, 103, 993-998.	1.9	5
139	Broadband Near-Infrared Emission from Transparent Ni 2+ -Doped Sodium Aluminosilicate Glass Ceramics. Chinese Physics Letters, 2006, 23, 2996-2998.	1.3	4
140	Comment on "Synthesis, functionalization and bioimaging applications of highly fluorescent carbon nanoparticles―by Sourov Chandra et al., Nanoscale, 2011, 3, 1533. Nanoscale, 2012, 4, 6664.	2.8	4
141	Microstructured multimaterial fibers for efficient optical detection. Journal of the American Ceramic Society, 2021, 104, 4058-4064.	1.9	4
142	Space selective reduction of europium ions via SrF ₂ crystals induced by high repetition rate femtosecond laser. Journal of the Ceramic Society of Japan, 2011, 119, 939-941.	0.5	3
143	Multimaterial Fiber Detector for Realâ€īime and Remote Xâ€Ray Monitoring. Advanced Materials Technologies, 2020, 5, 2000302	3.0	3
144	Hybridized oxyfluoride photonic glasses for radiation detection. Journal of the American Ceramic Society, 2021, 104, 1689-1697.	1.9	3

#	Article	IF	CITATIONS
145	Broadband Infrared Luminescence of Ni 2+ in Petalite-Type Transparent Glass Ceramics. Chinese Physics Letters, 2007, 24, 968-970.	1.3	2
146	Multicolor luminescence in oxygen-deficient Tb3+-doped calcium aluminogermanate glasses. Journal of Materials Research, 2008, 23, 1890-1894.	1.2	2
147	Visualized thermal history sensor based on the rare-earth-doped zirconia. Optics Letters, 2020, 45, 2608.	1.7	2
148	A 1625 nm Q‣witched Allâ€Fiber Laser. Advanced Photonics Research, 0, , 2100320.	1.7	2
149	Pressureless crystallization of glass toward scintillating composite with high crystallinity for radiation detection. Journal of Materials Science and Technology, 2022, 129, 173-180.	5.6	2
150	Structural Change in Au 3+ -Doped BK7 Glass Irradiated by Femtosecond Laser. Chinese Physics Letters, 2007, 24, 1372-1375.	1.3	1
151	Glass: Topological Engineering of Glass for Modulating Chemical State of Dopants (Adv. Mater.) Tj ETQq1 1	0.784314.rgBT 11.1	Qverlock
152	Nonlinear Photonic Glass: Allâ€Inorganic Transparent Composite Materials for Optical Limiting (Advanced Optical Materials 10/2020). Advanced Optical Materials, 2020, 8, 2070042.	3.6	1
153	Multicomponent Photonic Glass for Temperature Insensitive Fiber Probe. Journal of Lightwave Technology, 2020, 38, 4470-4477.	2.7	1
154	Novel glasses and glass-ceramics for broadband optical amplification. , 2007, , .		0
155	Effect of Preparation Method on Film Structure and Thermal Stability of M _e /M _e N/M _e (M _e = Al, Ti) Multilayer Thin Films. Advanced Materials Research, 2012, 465, 283-286.	0.3	0
156	Recent Research Progress on Femtosecond Laser Induced Microstructures in Glasses. International Journal of Optomechatronics, 2012, 6, 179-187.	3.3	0
157	Optically Active Materials: Local Chemistry Engineering in Doped Photonic Glass for Optical Pulse Generation (Advanced Optical Materials 6/2019). Advanced Optical Materials, 2019, 7, 1970022.	3.6	0
158	Interfacial Engineering for Gradient Optical Fiber. Advanced Optical Materials, 2020, 8, 1901941.	3.6	0
159	Nonlinear Optical Effects: Manipulating Nonlinear Optical Response via Domain Control in Nanocrystalâ€inâ€Glass Composites (Adv. Mater. 17/2021). Advanced Materials, 2021, 33, 2170132.	11.1	0
160	Entropy engineering in inorganic non-metallic glass. Fundamental Research, 2022, , .	1.6	0
161	Thermally Stable Gold Nanorods Dispersed Silicone Composite with Plasmonic Resonance in the Optical Communication Window. Nanotechnology, 0, , .	1.3	0