Jiangquan Lv

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9388292/publications.pdf

Version: 2024-02-01

623734 752698 1,170 23 14 20 citations g-index h-index papers 23 23 23 1729 times ranked docs citations citing authors all docs

#	Article	IF	CITATIONS
1	Photoelectrochemical energy storage materials: design principles and functional devices towards direct solar to electrochemical energy storage. Chemical Society Reviews, 2022, 51, 1511-1528.	38.1	113
2	Interfacial Assemble of Prussian Blue Analog to Access Hierarchical FeNi (oxy)-Hydroxide Nanosheets for Electrocatalytic Water Splitting. Frontiers in Chemistry, 2022, 10, 895168.	3.6	O
3	Stepwise chemical oxidation to access ultrathin metal (oxy)-hydroxide nanosheets for the oxygen evolution reaction. Nanoscale, 2021, 13, 15755-15762.	5. 6	11
4	A Novel Ni/ZnO/Cu Composite Electrode with High Sensitivity for Detection of Chemical Oxygen Demand. Surfaces and Interfaces, 2021, 24, 101091.	3.0	1
5	Co ₉ S ₈ integrated into nitrogen/sulfur dual-doped carbon nanofibers as an efficient oxygen bifunctional electrocatalyst for Zn–air batteries. Sustainable Energy and Fuels, 2020, 4, 1093-1098.	4.9	15
6	Boosting water oxidation activity by tuning the proton transfer process of cobalt phosphonates in neutral solution. Physical Chemistry Chemical Physics, 2020, 22, 14255-14260.	2.8	3
7	Mixed-metallic Cu(I)-Ag(I) iodide based inorganic–organic hybrid: substitution-induced band-gap enlargement and emission enhancement. Inorganic Chemistry Communication, 2020, 119, 108057.	3.9	1
8	Cobalt single-atoms anchored on porphyrinic triazine-based frameworks as bifunctional electrocatalysts for oxygen reduction and hydrogen evolution reactions. Journal of Materials Chemistry A, 2019, 7, 1252-1259.	10.3	152
9	Conductive metal–organic framework nanowire arrays for electrocatalytic oxygen evolution. Journal of Materials Chemistry A, 2019, 7, 10431-10438.	10.3	115
10	Rechargeable Zn–CO ₂ Electrochemical Cells Mimicking Twoâ€5tep Photosynthesis. Advanced Materials, 2019, 31, e1807807.	21.0	87
11	Robust and Highly Active FeNi@NCNT Nanowire Arrays as Integrated Air Electrode for Flexible Solidâ€State Rechargeable Znâ€Air Batteries. Advanced Materials Interfaces, 2018, 5, 1701448.	3.7	70
12	A photo-responsive bifunctional electrocatalyst for oxygen reduction and evolution reactions. Nano Energy, 2018, 43, 130-137.	16.0	105
13	Frontispiz: Reversible Aqueous Zinc–CO ₂ Batteries Based on CO ₂ –HCOOH Interconversion. Angewandte Chemie, 2018, 130, .	2.0	O
14	Frontispiece: Reversible Aqueous Zinc–CO ₂ Batteries Based on CO ₂ –HCOOH Interconversion. Angewandte Chemie - International Edition, 2018, 57, .	13.8	1
15	Reversible Aqueous Zinc–CO 2 Batteries Based on CO 2 –HCOOH Interconversion. Angewandte Chemie, 2018, 130, 17242-17247.	2.0	13
16	Reversible Aqueous Zinc–CO ₂ Batteries Based on CO ₂ –HCOOH Interconversion. Angewandte Chemie - International Edition, 2018, 57, 16996-17001.	13.8	108
17	Direct Solarâ€toâ€Electrochemical Energy Storage in a Functionalized Covalent Organic Framework. Angewandte Chemie - International Edition, 2018, 57, 12716-12720.	13.8	184
18	Direct Solarâ€toâ€Electrochemical Energy Storage in a Functionalized Covalent Organic Framework. Angewandte Chemie, 2018, 130, 12898-12902.	2.0	56

#	Article	IF	CITATION
19	Highly exposed Fe–N ₄ active sites in porous poly-iron-phthalocyanine based oxygen reduction electrocatalyst with ultrahigh performance for air cathode. Dalton Transactions, 2017, 46, 1803-1810.	3.3	32
20	Co-intercalation of multiple active units into graphene by pyrolysis of hydrogen-bonded precursors for zinc–air batteries and water splitting. Journal of Materials Chemistry A, 2017, 5, 20882-20891.	10.3	34
21	Si–C–F decorated porous carbon materials: A new class of electrocatalysts for the oxygen reduction reaction. Journal of Materials Chemistry A, 2016, 4, 7924-7929.	10.3	39
22	Scalable synthesis of nano-sandwich N-doped carbon materials with hierarchical-structure for energy conversion and storage. RSC Advances, 2016, 6, 93318-93324.	3.6	12
23	Sandwich-type porous carbon/sulfur/polyaniline composite as cathode material for high-performance lithium–sulfur batteries. RSC Advances, 2016, 6, 104591-104596.	3.6	18