Xusheng Qiu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/938811/publications.pdf

Version: 2024-02-01

	236925	315739
1,730	25	38
citations	h-index	g-index
		0.1.0.0
69	69	2130
docs citations	times ranked	citing authors
	1,730 citations 69 docs citations	1,730 25 citations h-index 69 69

#	Article	IF	CITATIONS
1	Autophagy Benefits the Replication of Newcastle Disease Virus in Chicken Cells and Tissues. Journal of Virology, 2014, 88, 525-537.	3.4	102
2	elF2 \hat{i} ±-CHOP-BCl-2/JNK and IRE1 \hat{i} ±-XBP1/JNK signaling promote apoptosis and inflammation and support the proliferation of Newcastle disease virus. Cell Death and Disease, 2019, 10, 891.	6.3	89
3	Graphene Oxides Decorated with Carnosine as an Adjuvant To Modulate Innate Immune and Improve Adaptive Immunity <i>in Vivo</i> . ACS Nano, 2016, 10, 2203-2213.	14.6	87
4	Inhibition of anti-viral stress granule formation by coronavirus endoribonuclease nsp15 ensures efficient virus replication. PLoS Pathogens, 2021, 17, e1008690.	4.7	83
5	HIV-1 Nef Antagonizes SERINC5 Restriction by Downregulation of SERINC5 via the Endosome/Lysosome System. Journal of Virology, 2018, 92, .	3.4	77
6	Newcastle Disease Virus V Protein Degrades Mitochondrial Antiviral Signaling Protein To Inhibit Host Type I Interferon Production via E3 Ubiquitin Ligase RNF5. Journal of Virology, 2019, 93, .	3.4	73
7	Goose RIG-I functions in innate immunity against Newcastle disease virus infections. Molecular Immunology, 2013, 53, 321-327.	2.2	60
8	Activation of the PKR/eIF2 $\hat{l}\pm$ signaling cascade inhibits replication of Newcastle disease virus. Virology Journal, 2014, 11, 62.	3.4	54
9	Newcastle disease virus degrades SIRT3 via PINK1-PRKN-dependent mitophagy to reprogram energy metabolism in infected cells. Autophagy, 2022, 18, 1503-1521.	9.1	52
10	Mycoplasma synoviaeenolase is a plasminogen/fibronectin binding protein. BMC Veterinary Research, 2014, 10, 223.	1.9	46
11	Newcastle Disease Virus V Protein Targets Phosphorylated STAT1 to Block IFN-I Signaling. PLoS ONE, 2016, 11, e0148560.	2.5	45
12	Newcastle Disease virus infection activates PI3K/Akt/mTOR and p38 MAPK/Mnk1 pathways to benefit viral mRNA translation via interaction of the viral NP protein and host eIF4E. PLoS Pathogens, 2020, 16, e1008610.	4.7	43
13	Infectious bronchitis virus entry mainly depends on clathrin mediated endocytosis and requires classical endosomal/lysosomal system. Virology, 2019, 528, 118-136.	2.4	42
14	Newcastle disease virus induces stable formation of bona fide stress granules to facilitate viral replication through manipulating host protein translation. FASEB Journal, 2017, 31, 1482-1493.	0.5	41
15	CD4 Expression and Env Conformation Are Critical for HIV-1 Restriction by SERINC5. Journal of Virology, 2019, 93, .	3.4	41
16	Newcastle disease virus infection triggers HMGB1 release to promote the inflammatory response. Virology, 2018, 525, 19-31.	2.4	40
17	Newcastle-disease-virus-induced ferroptosis through nutrient deprivation and ferritinophagy in tumor cells. IScience, 2021, 24, 102837.	4.1	40
18	Toll-like receptor 3 inhibits Newcastle disease virus replication through activation of pro-inflammatory cytokines and the type-1 interferon pathway. Archives of Virology, 2014, 159, 2937-2948.	2.1	39

#	Article	IF	CITATIONS
19	Evolution of Newcastle Disease Virus Quasispecies Diversity and Enhanced Virulence after Passage through Chicken Air Sacs. Journal of Virology, 2016, 90, 2052-2063.	3.4	39
20	RIP1 is a central signaling protein in regulation of TNF- $\hat{l}\pm/TRAIL$ mediated apoptosis and necroptosis during Newcastle disease virus infection. Oncotarget, 2017, 8, 43201-43217.	1.8	35
21	Prediction and identification of novel IBV S1 protein derived CTL epitopes in chicken. Vaccine, 2016, 34, 380-386.	3.8	34
22	Identification of biofilm formation by Mycoplasma gallisepticum. Veterinary Microbiology, 2012, 161, 96-103.	1.9	31
23	Entire genome sequence analysis of genotype IX Newcastle disease viruses reveals their early-genotype phylogenetic position and recent-genotype genome size. Virology Journal, 2011, 8, 117.	3.4	29
24	Supplementation of Vitamin E Protects Chickens from Newcastle Disease Virus-Mediated Exacerbation of Intestinal Oxidative Stress and Tissue Damage. Cellular Physiology and Biochemistry, 2018, 47, 1655-1666.	1.6	28
25	Exosomes Carry microRNAs into Neighboring Cells to Promote Diffusive Infection of Newcastle Disease Virus. Viruses, 2019, 11, 527.	3.3	26
26	Deep Sequencing-Based Transcriptome Profiling Reveals Avian Interferon-Stimulated Genes and Provides Comprehensive Insight into Newcastle Disease Virus-Induced Host Responses. Viruses, 2018, 10, 162.	3.3	25
27	Regulation of de novo translation of host cells by manipulation of PERK/PKR and GADD34-PP1 activity during Newcastle disease virus infection. Journal of General Virology, 2016, 97, 867-879.	2.9	24
28	Newcastle disease virus induces GO/G1 cell cycle arrest in asynchronously growing cells. Virology, 2018, 520, 67-74.	2.4	23
29	Newcastle disease virus infection induces activation of the NLRP3 inflammasome. Virology, 2016, 496, 90-96.	2.4	22
30	Infectious bronchitis virus poly-epitope-based vaccine protects chickens from acute infection. Vaccine, 2016, 34, 5209-5216.	3.8	21
31	Phylogenetic, antigenic and biological characterization of pigeon paramyxovirus type 1 circulating in China. Virology Journal, 2017, 14, 186.	3.4	21
32	Potential of genotype VII Newcastle disease viruses to cause differential infections in chickens and ducks. Transboundary and Emerging Diseases, 2018, 65, 1851-1862.	3.0	19
33	Vitamin E Supplementation Ameliorates Newcastle Disease Virus-Induced Oxidative Stress and Alleviates Tissue Damage in the Brains of Chickens. Viruses, 2018, 10, 173.	3.3	19
34	In Vitro and In Vivo Metabolomic Profiling after Infection with Virulent Newcastle Disease Virus. Viruses, 2019, 11, 962.	3.3	19
35	Newcastle disease virus employs macropinocytosis and Rab5a-dependent intracellular trafficking to infect DF-1 cells. Oncotarget, 2016, 7, 86117-86133.	1.8	19
36	Upregulation of DUSP6 impairs infectious bronchitis virus replication by negatively regulating ERK pathway and promoting apoptosis. Veterinary Research, 2021, 52, 7.	3.0	18

#	Article	IF	Citations
37	Goose MAVS functions in RIG-I-mediated IFN- \hat{l}^2 signaling activation. Developmental and Comparative Immunology, 2019, 93, 58-65.	2.3	16
38	Rapid detection of duck hepatitis virus type-1 by reverse transcription loop-mediated isothermal amplification. Journal of Virological Methods, 2012, 182, 76-81.	2.1	15
39	Identification and functional analysis of phosphorylation in Newcastle disease virus phosphoprotein. Archives of Virology, 2016, 161, 2103-2116.	2.1	15
40	Hybrid- and complex-type N-glycans are not essential for Newcastle disease virus infection and fusion of host cells. Glycobiology, 2012, 22, 369-378.	2.5	14
41	Development of Strand-Specific Real-Time RT-PCR to Distinguish Viral RNAs during Newcastle Disease Virus Infection. Scientific World Journal, The, 2014, 2014, 1-10.	2.1	14
42	A Recombinant La Sota Vaccine Strain Expressing Multiple Epitopes of Infectious Bronchitis Virus (IBV) Protects Specific Pathogen-Free (SPF) Chickens against IBV and NDV Challenges. Vaccines, 2019, 7, 170.	4.4	13
43	Caspase-Dependent Cleavage of DDX21 Suppresses Host Innate Immunity. MBio, 2021, 12, e0100521.	4.1	13
44	NDV entry into dendritic cells through macropinocytosis and suppression of T lymphocyte proliferation. Virology, 2018, 518, 126-135.	2.4	12
45	Rescue of virulent class I Newcastle disease virus variant 9a5b-D5C1. Virology Journal, 2012, 9, 120.	3.4	11
46	Identification of genes involved in Mycoplasma gallisepticum biofilm formation using mini-Tn4001-SGM transposon mutagenesis. Veterinary Microbiology, 2017, 198, 17-22.	1.9	11
47	Ubiquitination on Lysine 247 of Newcastle Disease Virus Matrix Protein Enhances Viral Replication and Virulence by Driving Nuclear-Cytoplasmic Trafficking. Journal of Virology, 2022, 96, JVI0162921.	3.4	10
48	A SOE-PCR method of introducing multiple mutations into Mycoplasma gallisepticum neuraminidase. Journal of Microbiological Methods, 2013, 94, 117-120.	1.6	9
49	Characterization of the chaperonin GroEL in Mycoplasma gallisepticum. Archives of Microbiology, 2015, 197, 235-244.	2.2	9
50	Characterization and functional analysis of chicken APOBEC4. Developmental and Comparative Immunology, 2020, 106, 103631.	2.3	9
51	Proteasomal degradation of human SERINC4: A potent host anti-HIV-1 factor that is antagonized by nef. Current Research in Virological Science, 2020, 1, 100002.	3.5	9
52	Characterization of triosephosphate isomerase from <i>Mycoplasma gallisepticum</i> . FEMS Microbiology Letters, 2015, 362, fnv140.	1.8	7
53	Development of a Recombinant Thermostable Newcastle Disease Virus (NDV) Vaccine Express Infectious Bronchitis Virus (IBV) Multiple Epitopes for Protecting against IBV and NDV Challenges. Vaccines, 2020, 8, 564.	4.4	6
54	Enzymatic Activity Analysis and Catalytic Essential Residues Identification of Brucella abortus Malate Dehydrogenase. Scientific World Journal, The, 2014, 2014, 1-8.	2.1	5

#	Article	IF	CITATIONS
55	Newcastle Disease Virus Induced Pathologies Severely Affect the Exocrine and Endocrine Functions of the Pancreas in Chickens. Genes, 2021, 12, 495.	2.4	5
56	Comparison of the protective antigen variabilities of prevalent Newcastle disease viruses in response to homologous/heterologous genotype vaccines. Poultry Science, 2021, 100, 101267.	3.4	5
57	Production, characterization, and epitope mapping of a monoclonal antibody against genotype VII Newcastle disease virus V protein. Journal of Virological Methods, 2018, 260, 88-97.	2.1	3
58	Genome-Wide Analysis of Alternative Splicing during Host-Virus Interactions in Chicken. Viruses, 2021, 13, 2409.	3.3	3
59	Specific Monoclonal Antibodies Recognizing the Endogenous Chicken High Mobility Group Box 1 Protein. Monoclonal Antibodies in Immunodiagnosis and Immunotherapy, 2017, 36, 163-168.	1.6	1
60	Chicken RNA-binding protein T-cell internal antigen-1 contributes to stress granule formation in chicken cells and tissues. Journal of Veterinary Science, 2018, 19, 3.	1.3	1