
Thomas Astor

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9387918/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Global application of an unoccupied aerial vehicle photogrammetry protocol for predicting aboveground biomass in nonâ€forest ecosystems. Remote Sensing in Ecology and Conservation, 2022, 8, 57-71.	4.3	13
2	Multisite and Multitemporal Grassland Yield Estimation Using UAV-Borne Hyperspectral Data. Remote Sensing, 2022, 14, 2068.	4.0	7
3	Remote sensing data fusion as a tool for biomass prediction in extensive grasslands invaded by <i>L. polyphyllus</i> . Remote Sensing in Ecology and Conservation, 2021, 7, 198-213.	4.3	17
4	Biomass Estimation of Vegetables—Can Remote Sensing Be a Tool for It?. Urban Book Series, 2021, , 95-102.	0.6	0
5	Spatio-temporal analysis of the effects of biogas production on agricultural lands. Land Use Policy, 2021, 102, 105240.	5.6	1
6	Comparison of Spaceborne and UAV-Borne Remote Sensing Spectral Data for Estimating Monsoon Crop Vegetation Parameters. Sensors, 2021, 21, 2886.	3.8	7
7	Multi-temporal estimation of vegetable crop biophysical parameters with varied nitrogen fertilization using terrestrial laser scanning. Computers and Electronics in Agriculture, 2021, 184, 106051.	7.7	5
8	Assessing Spatial Variability of Barley Whole Crop Biomass Yield and Leaf Area Index in Silvoarable Agroforestry Systems Using UAV-Borne Remote Sensing. Remote Sensing, 2021, 13, 2751.	4.0	17
9	Potentials and Limitations of WorldView-3 Data for the Detection of Invasive Lupinus polyphyllus Lindl. in Semi-Natural Grasslands. Remote Sensing, 2021, 13, 4333.	4.0	3
10	Vegetable Crop Biomass Estimation Using Hyperspectral and RGB 3D UAV Data. Agronomy, 2020, 10, 1600.	3.0	16
11	Mapping Invasive Lupinus polyphyllus Lindl. in Semi-natural Grasslands Using Object-Based Image Analysis of UAV-borne Images. PFG - Journal of Photogrammetry, Remote Sensing and Geoinformation Science, 2020, 88, 391-406.	1.1	13
12	Agricultural crop discrimination in a heterogeneous low-mountain range region based on multi-temporal and multi-sensor satellite data. Computers and Electronics in Agriculture, 2020, 179, 105864.	7.7	19
13	The potential of UAV-borne spectral and textural information for predicting aboveground biomass and N fixation in legume-grass mixtures. PLoS ONE, 2020, 15, e0234703.	2.5	39
14	Predicting Forage Quality of Grasslands Using UAV-Borne Imaging Spectroscopy. Remote Sensing, 2020, 12, 126.	4.0	56
15	Prediction of Biomass and N Fixation of Legume–Grass Mixtures Using Sensor Fusion. Frontiers in Plant Science, 2020, 11, 603921.	3.6	18
16	Title is missing!. , 2020, 15, e0234703.		0
17	Title is missing!. , 2020, 15, e0234703.		0
18	Title is missing!. , 2020, 15, e0234703.		0

2

THOMAS ASTOR

#	Article	IF	CITATIONS
19	Title is missing!. , 2020, 15, e0234703.		Ο
20	Title is missing!. , 2020, 15, e0234703.		0
21	Title is missing!. , 2020, 15, e0234703.		Ο
22	Multi-Temporal Monsoon Crop Biomass Estimation Using Hyperspectral Imaging. Remote Sensing, 2019, 11, 1771.	4.0	13
23	Multi-Temporal Agricultural Land-Cover Mapping Using Single-Year and Multi-Year Models Based on Landsat Imagery and IACS Data. Agronomy, 2019, 9, 309.	3.0	10
24	Biomass Prediction of Heterogeneous Temperate Grasslands Using an SfM Approach Based on UAV Imaging. Agronomy, 2019, 9, 54.	3.0	68
25	Methods for LiDAR-based estimation of extensive grassland biomass. Computers and Electronics in Agriculture, 2019, 156, 693-699.	7.7	37
26	Evaluation of 3D point cloud-based models for the prediction of grassland biomass. International Journal of Applied Earth Observation and Geoinformation, 2019, 78, 352-359.	2.8	56
27	Remote sensing as a tool to assess botanical composition, structure, quantity and quality of temperate grasslands. Grass and Forage Science, 2018, 73, 1-14.	2.9	97
28	Estimation of Vegetable Crop Parameter by Multi-temporal UAV-Borne Images. Remote Sensing, 2018, 10, 805.	4.0	60
29	Landscape history confounds the ability of the NDVI to detect fineâ€scale variation in grassland communities. Methods in Ecology and Evolution, 2018, 9, 2009-2018.	5.2	5
30	Fusion of Ultrasonic and Spectral Sensor Data for Improving the Estimation of Biomass in Grasslands with Heterogeneous Sward Structure. Remote Sensing, 2017, 9, 98.	4.0	54
31	Construction and Use of a Simple Index of Urbanisation in the Rural–Urban Interface of Bangalore, India. Sustainability, 2017, 9, 2146.	3.2	55
32	Airborne Hyperspectral Data Predict Fine-Scale Plant Species Diversity in Grazed Dry Grasslands. Remote Sensing, 2016, 8, 133.	4.0	38
33	Airborne hyperspectral data predict Ellenberg indicator values for nutrient and moisture availability in dry grazed grasslands within a local agricultural landscape. Ecological Indicators, 2016, 66, 503-516.	6.3	9
34	Comparing mobile and static assessment of biomass in heterogeneous grassland with a multi-sensor system. Journal of Sensors and Sensor Systems, 2016, 5, 301-312.	0.9	15
35	Classification of Grassland Successional Stages Using Airborne Hyperspectral Imagery. Remote Sensing, 2014, 6, 7732-7761.	4.0	29
36	Assessment of fine-scale plant species beta diversity using WorldView-2 satellite spectral dissimilarity. Ecological Informatics, 2013, 18, 1-9.	5.2	19