David H Bromwich

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9387856/publications.pdf Version: 2024-02-01

DAVID H BROMWICH

#	Article	IF	CITATIONS
1	Decadal Variability of the ENSO Teleconnection to the High-Latitude South Pacific Governed by Coupling with the Southern Annular Mode*. Journal of Climate, 2006, 19, 979-997.	1.2	334
2	Central West Antarctica among the most rapidly warming regions on Earth. Nature Geoscience, 2013, 6, 139-145.	5.4	328
3	An Assessment of Precipitation Changes over Antarctica and the Southern Ocean since 1989 in Contemporary Global Reanalyses*. Journal of Climate, 2011, 24, 4189-4209.	1.2	241
4	A tropospheric assessment of the ERA-40, NCEP, and JRA-25 global reanalyses in the polar regions. Journal of Geophysical Research, 2007, 112, .	3.3	236
5	Advancing Polar Prediction Capabilities on Daily to Seasonal Time Scales. Bulletin of the American Meteorological Society, 2016, 97, 1631-1647.	1.7	199
6	Development and Testing of Polar Weather Research and Forecasting (WRF) Model. Part I: Greenland Ice Sheet Meteorology*. Monthly Weather Review, 2008, 136, 1971-1989.	0.5	190
7	Greenland ice sheet surface mass balance 1991–2000: Application of Polar MM5 mesoscale model and in situ data. Journal of Geophysical Research, 2004, 109, .	3.3	143
8	Comprehensive evaluation of polar weather research and forecasting model performance in the Antarctic. Journal of Geophysical Research D: Atmospheres, 2013, 118, 274-292.	1.2	128
9	Development and testing of Polar Weather Research and Forecasting model: 2. Arctic Ocean. Journal of Geophysical Research, 2009, 114, .	3.3	125
10	A comparison of the regional Arctic System Reanalysis and the global ERAâ€interim Reanalysis for the Arctic. Quarterly Journal of the Royal Meteorological Society, 2016, 142, 644-658.	1.0	125
11	Tropospheric clouds in Antarctica. Reviews of Geophysics, 2012, 50, .	9.0	124
12	Real-Time Mesoscale Modeling Over Antarctica: The Antarctic Mesoscale Prediction System*. Bulletin of the American Meteorological Society, 2003, 84, 1533-1546.	1.7	121
13	Development and Testing of Polar WRF. Part III: Arctic Land*. Journal of Climate, 2011, 24, 26-48.	1.2	121
14	A Decade of Antarctic Science Support Through Amps. Bulletin of the American Meteorological Society, 2012, 93, 1699-1712.	1.7	117
15	January 2016 extensive summer melt in West Antarctica favoured by strong El Niño. Nature Communications, 2017, 8, 15799.	5.8	116
16	A spatially calibrated model of annual accumulation rate on the Greenland Ice Sheet (1958–2007). Journal of Geophysical Research, 2010, 115, .	3.3	113
17	Real-Time Forecasting for the Antarctic: An Evaluation of the Antarctic Mesoscale Prediction System (AMPS)*. Monthly Weather Review, 2005, 133, 579-603.	0.5	99
18	The Climate of the McMurdo, Antarctica, Region as Represented by One Year of Forecasts from the Antarctic Mesoscale Prediction System*. Journal of Climate, 2005, 18, 1174-1189.	1.2	98

DAVID H BROMWICH

#	Article	IF	CITATIONS
19	Recent variability and trends of Antarctic nearâ€surface temperature. Journal of Geophysical Research, 2008, 113, .	3.3	94
20	Sea Ice Enhancements to Polar WRF*. Monthly Weather Review, 2015, 143, 2363-2385.	0.5	69
21	Evaluation of the NCEP–NCAR and ECMWF 15- and 40-Yr Reanalyses Using Rawinsonde Data from Two Independent Arctic Field Experiments*. Monthly Weather Review, 2005, 133, 3562-3578.	0.5	67
22	Precipitation Changes in High Southern Latitudes from Global Reanalyses: A Cautionary Tale. Surveys in Geophysics, 2011, 32, 475-494.	2.1	62
23	Meteorological Drivers and Large-Scale Climate Forcing of West Antarctic Surface Melt. Journal of Climate, 2019, 32, 665-684.	1.2	62
24	Evaluation of Polar WRF forecasts on the Arctic System Reanalysis domain: Surface and upper air analysis. Journal of Geophysical Research, 2011, 116, .	3.3	59
25	Greenland Ice Sheet Mass Balance Reconstruction. Part I: Net Snow Accumulation (1600–2009). Journal of Climate, 2013, 26, 3919-3934.	1.2	49
26	Recent Near-surface Temperature Trends in the Antarctic Peninsula from Observed, Reanalysis and Regional Climate Model Data. Advances in Atmospheric Sciences, 2020, 37, 477-493.	1.9	48
27	Evaluation of Polar WRF forecasts on the Arctic System Reanalysis Domain: 2. Atmospheric hydrologic cycle. Journal of Geophysical Research, 2012, 117, .	3.3	44
28	Simulation of Late Summer Arctic Clouds during ASCOS with Polar WRF. Monthly Weather Review, 2017, 145, 521-541.	0.5	42
29	Regional climate variability driven by foehn winds in the McMurdo Dry Valleys, Antarctica. International Journal of Climatology, 2013, 33, 945-958.	1.5	41
30	Dynamics of the Foehn Mechanism in the McMurdo Dry Valleys of Antarctica from Polar WRF. Quarterly Journal of the Royal Meteorological Society, 2013, 139, 1615-1631.	1.0	41
31	Twentieth century Antarctic air temperature and snowfall simulations by IPCC climate models. Geophysical Research Letters, 2008, 35, .	1.5	40
32	A Dynamical Investigation of the May 2004 McMurdo Antarctica Severe Wind Event Using AMPS*. Monthly Weather Review, 2008, 136, 7-26.	0.5	33
33	Climatological aspects of cyclogenesis near Ad´elie Land Antarctica. Tellus, Series A: Dynamic Meteorology and Oceanography, 2022, 63, 921.	0.8	32
34	Arctic System Reanalysis improvements in topographically forced winds near Greenland. Quarterly Journal of the Royal Meteorological Society, 2016, 142, 2033-2045.	1.0	32
35	Microphysics of summer clouds in central West Antarctica simulated by the Polar Weather Research and Forecasting Model (WRF) and the Antarctic Mesoscale Prediction System (AMPS). Atmospheric Chemistry and Physics, 2019, 19, 12431-12454.	1.9	32
36	Cloud Influence on ERA5 and AMPS Surface Downwelling Longwave Radiation Biases in West Antarctica. Journal of Climate, 2019, 32, 7935-7949.	1.2	30

DAVID H BROMWICH

#	Article	IF	CITATIONS
37	A twentieth century perspective on summer Antarctic pressure change and variability and contributions from tropical SSTs and ozone depletion. Geophysical Research Letters, 2017, 44, 9918-9927.	1.5	25
38	The Year of Polar Prediction in the Southern Hemisphere (YOPP-SH). Bulletin of the American Meteorological Society, 2020, 101, E1653-E1676.	1.7	24
39	Austral summer foehn winds over the McMurdo dry valleys of Antarctica from Polar WRF. Quarterly Journal of the Royal Meteorological Society, 2014, 140, 1825-1837.	1.0	23
40	An Impact Assessment of GPS Radio Occultation Data on Prediction of a Rapidly Developing Cyclone over the Southern Ocean*. Monthly Weather Review, 2014, 142, 4187-4206.	0.5	21
41	Evaluation of the AMPS Boundary Layer Simulations on the Ross Ice Shelf with Tower Observations. Journal of Applied Meteorology and Climatology, 2016, 55, 2349-2367.	0.6	21
42	A Self-Organizing-Map-Based Evaluation of the Antarctic Mesoscale Prediction System Using Observations from a 30-m Instrumented Tower on the Ross Ice Shelf, Antarctica. Weather and Forecasting, 2017, 32, 223-242.	0.5	19
43	Performance of Weather Forecast Models in the Rescue of Dr. Ronald Shemenski from the South Pole in April 2001*. Weather and Forecasting, 2003, 18, 142-160.	0.5	17
44	West Antarctic surface melt event of January 2016 facilitated by föhn warming. Quarterly Journal of the Royal Meteorological Society, 2019, 145, 687-704.	1.0	16
45	Assimilation of GPS Radio Occultation Refractivity Data from CHAMP and SAC-C Missions over High Southern Latitudes with MM5 4DVAR. Monthly Weather Review, 2008, 136, 2923-2944.	0.5	15
46	Contribution of Atmospheric Circulation to Inception of the Laurentide Ice Sheet at 116 kyr BP*. Journal of Climate, 2009, 22, 39-57.	1.2	15
47	Global atmospheric responses to Antarctic forcing. Annals of Glaciology, 1998, 27, 521-527.	2.8	14
48	A pole to pole west Pacific atmospheric teleconnection during August. Journal of Geophysical Research, 2002, 107, ACL 8-1.	3.3	11
49	On the role of the NAO in the recent northeastern Atlantic Arctic warming. Geophysical Research Letters, 2004, 31, .	1.5	11
50	Major surface melting over the Ross Ice Shelf part I: Foehn effect. Quarterly Journal of the Royal Meteorological Society, 2021, 147, 2874-2894.	1.0	10
51	Major surface melting over the Ross Ice Shelf part <scp>II</scp> : Surface energy balance. Quarterly Journal of the Royal Meteorological Society, 2021, 147, 2895-2916.	1.0	8
52	Reply to 'How significant is West Antarctic warming?'. Nature Geoscience, 2014, 7, 247-247.	5.4	7
53	Impacts of initial conditions and model configuration on simulations of polar lows near Svalbard using Polar <scp>WRF</scp> with <scp>3DVAR</scp> . Quarterly Journal of the Royal Meteorological Society, 2021, 147, 3806-3834.	1.0	5
54	Predicting Frigid Mixedâ€Phase Clouds for Pristine Coastal Antarctica. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2021JD035112.	1.2	5

#	Article	IF	CITATIONS
55	Oceanic response to changes in the WAIS and astronomical forcing during the MIS31 superinterglacial. Climate of the Past, 2017, 13, 1081-1095.	1.3	4
56	Antarctic data impact experiments with Polar <scp>WRF</scp> during the <scp>YOPPâ€SH</scp> summer special observing period. Quarterly Journal of the Royal Meteorological Society, 2022, 148, 2194-2218.	1.0	3
57	Polar WRF V4.1.1 simulation and evaluation for the Antarctic and Southern Ocean. Frontiers of Earth Science, 2022, 16, 1005-1024.	0.9	3
58	Impact of downward longwave radiative deficits on Antarctic sea-ice extent predictability during the sea ice growth period. Environmental Research Letters, 2022, 17, 084008.	2.2	3
59	Atmospheric circulation anomalies due to 115Âkyr BP climate forcing dominated by changes in the North Pacific Ocean. Climate Dynamics, 2012, 38, 815-835.	1.7	2
60	The 16th Workshop on Antarctic Meteorology and Climate and 6th Year of Polar Prediction in the Southern Hemisphere Meeting. Advances in Atmospheric Sciences, 2022, 39, 536-542.	1.9	1