
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9387625/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Does Compound I Vary Significantly between Isoforms of Cytochrome P450?. Journal of the American Chemical Society, 2011, 133, 15464-15474.	13.7	188
2	Condensed Fukui Functions Derived from Stockholder Charges:  Assessment of Their Performance as Local Reactivity Descriptors. Journal of Physical Chemistry A, 2002, 106, 3885-3890.	2.5	168
3	Understanding the determinants of selectivity in drug metabolism through modeling of dextromethorphan oxidation by cytochrome P450. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 6050-6055.	7.1	98
4	NO Bonding to Heme Groups: DFT and Correlated ab Initio Calculations. Journal of Physical Chemistry A, 2009, 113, 7338-7345.	2.5	84
5	Hardâ^'Soft Acidâ^'Base Interactions of Silylenes and Germylenes. Journal of Physical Chemistry A, 2005, 109, 1608-1615.	2.5	66
6	Spin-Philicity and Spin-Donicity of Substituted Carbenes, Silylenes, Germylenes, and Stannylenes. Journal of Physical Chemistry A, 2004, 108, 490-499.	2.5	60
7	Hydrogen bond network topology in liquid water and methanol: a graph theory approach. Physical Chemistry Chemical Physics, 2013, 15, 15163.	2.8	60
8	Online conferences – Towards a new (virtual) reality. Computational and Theoretical Chemistry, 2020, 1189, 112975.	2.5	42
9	Silylenes:Â A Unified Picture of Their Stability, Acidâ^'Base and Spin Properties, Nucleophilicity, and Electrophilicity via Computational and Conceptual Density Functional Theory. Journal of Physical Chemistry A, 2007, 111, 10815-10823.	2.5	40
10	Spin Crossover Behavior in a Homologous Series of Iron(II) Complexes Based on Functionalized Bipyridyl Ligands. Inorganic Chemistry, 2018, 57, 9880-9891.	4.0	36
11	Studies on an iron(iii)-peroxo porphyrin. Iron(iii)-peroxo or iron(ii)-superoxo?. Dalton Transactions, 2010, 39, 2049.	3.3	33
12	Oxazol-2-ylidenes. A new class of stable carbenes?. RSC Advances, 2013, 3, 7970.	3.6	32
13	Spin-philicity and spin-donicity of simple nitrenes and phosphinidenes. Chemical Physics Letters, 2005, 401, 337-341.	2.6	29
14	Drude-type conductivity of charged sphere colloidal crystals: Density and temperature dependence. Journal of Chemical Physics, 2005, 123, 104903.	3.0	24
15	Direct Hydride Shift Mechanism and Stereoselectivity of P450 _{nor} Confirmed by QM/MM Calculations. Journal of Physical Chemistry B, 2012, 116, 872-885.	2.6	23
16	Relationship between stability and dimerization ability of silylenes. Journal of Organometallic Chemistry, 2003, 686, 112-117.	1.8	21
17	Quantum Mechanical Modeling: A Tool for the Understanding of Enzyme Reactions. Biomolecules, 2013, 3, 662-702.	4.0	21
18	Water-formamide mixtures: Topology of the hydrogen-bonded network. Journal of Molecular Liquids, 2017, 228, 25-31.	4.9	20

#	Article	IF	CITATIONS
19	Identifying the Rate-Limiting Elementary Steps of Nitrogen Fixation with Single-Site Fe Model Complexes. Inorganic Chemistry, 2018, 57, 8499-8508.	4.0	19
20	Solution behavior of iron(<scp>iii</scp>) and iron(<scp>ii</scp>) porphyrins in DMSO and reaction with superoxide. Effect of neighboring positive charge on thermodynamics, kinetics and nature of iron-(su)peroxo product. Dalton Transactions, 2012, 41, 546-557.	3.3	18
21	On the Usefulness of Bond Orders and Overlap Populations to Chalcogen-Nitrogen Systems. European Journal of Inorganic Chemistry, 2006, 2006, 69-77.	2.0	17
22	Nucleophilicity and electrophilicity of silylenes from a molecular electrostatic potential and dual descriptor perspectives. Chemical Physics Letters, 2009, 470, 180-186.	2.6	17
23	Convergence of Atomic Charges with the Size of the Enzymatic Environment. Journal of Chemical Information and Modeling, 2015, 55, 564-571.	5.4	17
24	Evolutionary and mechanistic insights into substrate and product accommodation of <scp>CTP</scp> :phosphocholine cytidylyltransferase from <i><scp>P</scp>lasmodiumÂfalciparum</i> . FEBS Journal, 2013, 280, 3132-3148.	4.7	16
25	Structural and energetic basis of isopropylmalate dehydrogenase enzyme catalysis. FEBS Journal, 2014, 281, 5063-5076.	4.7	16
26	Enolization as an Alternative Proton Delivery Pathway in Human Aromatase (P450 19A1). Journal of Physical Chemistry B, 2014, 118, 390-405.	2.6	14
27	How can we detect hydrogen bond local cooperativity in liquid water: A simulation study. Journal of Molecular Liquids, 2017, 245, 140-146.	4.9	13
28	Demonstrating the Direct Relationship between Hydrogen Evolution Reaction and Catalyst Deactivation in Synthetic Fe Nitrogenases. ACS Catalysis, 2020, 10, 12555-12568.	11.2	13
29	The mechanism of human aromatase (CYP 19A1) revisited: DFT and QM/MM calculations support a compound I-mediated pathway for the aromatization process. Structural Chemistry, 2015, 26, 279-300.	2.0	12
30	Hydration sphere structure of proteins: A theoretical study. Journal of Molecular Liquids, 2017, 238, 462-469.	4.9	12
31	Is there a satisfactory description of the molecular structure of Roesky's ketone?. Chemical Physics Letters, 2005, 413, 440-444.	2.6	11
32	Molecular Mechanism for the Thermo-Sensitive Phenotype of CHO-MT58 Cell Line Harbouring a Mutant CTP:Phosphocholine Cytidylyltransferase. PLoS ONE, 2015, 10, e0129632.	2.5	10
33	NaSCN:Â Striking Differences between Its Gas-Phase and Crystal-Phase Structure: A Theoretical Study. Journal of Physical Chemistry A, 2004, 108, 8400-8406.	2.5	9
34	Relationship between electrophilicity and spin-philicity of divalent and monovalent species of group 14 and 15 elements. Computational and Theoretical Chemistry, 2006, 771, 135-140.	1.5	8
35	How does the protein environment optimize the thermodynamics of thiol sulfenylation? Insights from model systems to QM/MM calculations on human 2-Cys peroxiredoxin. Journal of Biomolecular Structure and Dynamics, 2015, 33, 584-596.	3.5	8
36	Exploring Hydrogen Evolution Accompanying Nitrogen Reduction on Biomimetic Nitrogenase Analogs: Can Fe–NxHyIntermediates Be Active Under Turnover Conditions?. Inorganic Chemistry, 2019, 58, 7969-7977.	4.0	8

#	Article	IF	CITATIONS
37	lron(<scp>ii</scp>) pillared-layer responsive frameworks <i>via</i> "kagomé dual―(kgd) supramolecular tessellations. Inorganic Chemistry Frontiers, 2021, 8, 3532-3546.	6.0	8
38	Mechanism of Water Addition to Silatriafulvenes and Silapentafulvenes. Organometallics, 2008, 27, 2723-2729.	2.3	7
39	Active site dynamics and catalytic mechanism in arabinan hydrolysis catalyzed by GH43 endo-arabinanase from QM/MM molecular dynamics simulation and potential energy surface. Journal of Biomolecular Structure and Dynamics, 2022, 40, 7439-7449.	3.5	7
40	First Principles Calculation of the Reaction Rates for Ligand Binding to Myoglobin: The Cases of NO and CO. Chemistry - A European Journal, 2018, 24, 5350-5358.	3.3	6
41	DFT study of formation and properties of dinuclear zirconocene cations: Effects of ligand structure, solvent, and metal on the dimerization process. Journal of Organometallic Chemistry, 2020, 905, 121024.	1.8	6
42	Gas Sensing by Bacterial H-NOX Proteins: An MD Study. Molecules, 2020, 25, 2882.	3.8	6
43	Glutamate 270 plays an essential role in K ⁺ â€activation and domain closure of <i>Thermus thermophilus</i> isopropylmalate dehydrogenase. FEBS Letters, 2015, 589, 240-245.	2.8	5
44	Combined Docking and Quantum Chemical Study on CYP-Mediated Metabolism of Estrogens in Man. Chemical Research in Toxicology, 2017, 30, 583-594.	3.3	5
45	Quantum chemical calculations support pseudouridine synthase reaction through a glycal intermediate and provide details of the mechanism. Theoretical Chemistry Accounts, 2018, 137, 1.	1.4	5
46	The Structure-Derived Mechanism of Box H/ACA Pseudouridine Synthase Offers a Plausible Paradigm for Programmable RNA Editing. ACS Catalysis, 2022, 12, 2756-2769.	11.2	5
47	Role of water coordination at zinc binding site and its catalytic pathway of dizinc creatininase: insights from quantum cluster approach. Journal of Computer-Aided Molecular Design, 2022, 36, 279-289.	2.9	5
48	Synthesis of vinca alkaloids and related compounds. Part 110: A new synthetic method for the preparation of pandoline-type alkaloid-like molecules. Tetrahedron, 2008, 64, 7949-7955.	1.9	4
49	Combining the chemistries of silylene and sulfur-nitrogen compounds—SiS2N2 and related systems. Dalton Transactions, 2010, 39, 3256.	3.3	4
50	Accurate modeling of cation–π interactions in enzymes: a case study on the CDPCho:phosphocholine cytidylyltransferase complex. Structural Chemistry, 2015, 26, 1411-1423.	2.0	3
51	H ₂ and N ₂ Binding Affinities Are Coupled in Synthetic Fe Nitrogenases Limiting N ₂ Fixation. Organometallics, 2022, 41, 1134-1146.	2.3	3
52	Dual Role of the Active Site Residues of <i>Thermus thermophilus</i> 3-Isopropylmalate Dehydrogenase: Chemical Catalysis and Domain Closure. Biochemistry, 2016, 55, 560-574.	2.5	2
53	Synthesis, experimental and theoretical studies on the factors influencing the pKa values of new crown ethers containing a diarylphosphinic acid unit. Tetrahedron, 2016, 72, 8593-8602.	1.9	2
54	Organizing atomic partial charges into a database. Computational and Theoretical Chemistry, 2002, 589-590, 1-5.	1.5	1

#	Article	IF	CITATIONS
55	The mechanism of biochemical NOâ€sensing: insights from computational chemistry. Chemistry - A European Journal, 0, , .	3.3	1
56	Theoretical insights into water network of B-DNA duplex with Watson-Crick and Hoogsteen base pairing geometries. Journal of Molecular Liquids, 2022, 362, 119728.	4.9	1
57	Molecular structure and internal rotation potential of perfluoro (2,4-dimethyl-3-oxa-2,4-diazapentane), (CF3)2N–O–N(CF3)2. Computational and Theoretical Chemistry, 2003, 620, 157-163.	1.5	Ο
58	NaSCN: Striking Differences Between Its Gas-Phase and Crystal-Phase Structure: A Theoretical Study. ChemInform, 2004, 35, no.	0.0	0
59	The Reactivity of Human and Equine Estrogen Quinones towards Purine Nucleosides. Symmetry, 2021, 13, 1641.	2.2	0