
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9387516/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Selfâ€Healing Kirigami Assembly Strategy for Conformal Electronics. Advanced Functional Materials, 2022, 32, 2109214.	14.9	34
2	Numerical investigation of high-frequency pulsating electrohydrodynamic jet at low electric Bond numbers. Physics of Fluids, 2022, 34, .	4.0	21
3	Electrohydrodynamically Printed Flexible Organic Memristor for Leaky Integrate and Fire Neuron. IEEE Electron Device Letters, 2022, 43, 116-119.	3.9	16
4	Critical Size/Viscosity for Coffee-Ring-Free Printing of Perovskite Micro/Nanopatterns. ACS Applied Materials & Interfaces, 2022, 14, 14712-14720.	8.0	18
5	Residual oscillation suppression via waveform optimization for stable electrohydrodynamic drop-on-demand printing. Additive Manufacturing, 2022, 55, 102849.	3.0	6
6	Numerical analysis of electrohydrodynamic jet printing under constant and step change of electric voltages. Physics of Fluids, 2022, 34, .	4.0	20
7	Electrohydrodynamically Printed Multicolor Perovskite Image Sensor Array. , 2021, , .		1
8	Highâ€Resolution, Flexible, and Fullâ€Color Perovskite Image Photodetector via Electrohydrodynamic Printing of Ionicâ€Liquidâ€Based Ink. Advanced Functional Materials, 2021, 31, 2100857.	14.9	61
9	Programmable robotized â€~transfer-and-jet' printing for large, 3D curved electronics on complex surfaces. International Journal of Extreme Manufacturing, 2021, 3, 045101.	12.7	20
10	Enhancing pulsed electrohydrodynamic printing frequency via high-order-mode ejection. Physics of Fluids, 2021, 33, .	4.0	19
11	Enhanced geometric precision of non-contact, conformal 3D printing via "error-transferred― towards jetting-direction. Precision Engineering, 2021, 72, 1-12.	3.4	5
12	Theoretical and experimental studies of laser lift-off of nonwrinkled ultrathin polyimide film for flexible electronics. Applied Surface Science, 2020, 499, 143910.	6.1	35
13	Morphology-programmable self-aligned microlens array for light extraction via electrohydrodynamic printing. Organic Electronics, 2020, 87, 105969.	2.6	14
14	Highâ€Resolution Pixelated Light Emitting Diodes Based on Electrohydrodynamic Printing and Coffeeâ€Ringâ€Free Quantum Dot Film. Advanced Materials Technologies, 2020, 5, 2000401.	5.8	44
15	Fabrication Techniques for Curved Electronics on Arbitrary Surfaces. Advanced Materials Technologies, 2020, 5, 2000093.	5.8	47
16	Active curved surface deforming of flexible conformal electronics by multi-fingered actuator. Robotics and Computer-Integrated Manufacturing, 2020, 64, 101942.	9.9	11
17	Electrohydrodynamically Printed Highâ€Resolution Fullâ€Color Hybrid Perovskites. Advanced Functional Materials, 2019, 29, 1903294.	14.9	97
18	Laser Transfer, Printing, and Assembly Techniques for Flexible Electronics. Advanced Electronic Materials, 2019, 5, 1800900.	5.1	91

#	Article	IF	CITATIONS
19	Assembly and applications of 3D conformal electronics on curvilinear surfaces. Materials Horizons, 2019, 6, 642-683.	12.2	141
20	Theoretical and experimental studies of electrostatic focusing for electrohydrodynamic jet printing. Journal of Micromechanics and Microengineering, 2019, 29, 065002.	2.6	14
21	Charged Satellite Drop Avoidance in Electrohydrodynamic Dripping. Micromachines, 2019, 10, 172.	2.9	5
22	Experimental study of laser lift-off of ultra-thin polyimide film for flexible electronics. Science China Technological Sciences, 2019, 62, 233-242.	4.0	30
23	Coffee ring elimination and crystalline control of electrohydrodynamically printed high-viscosity perovskites. Journal of Materials Chemistry C, 2019, 7, 14867-14873.	5.5	38
24	Largeâ€Scale Directâ€Writing of Aligned Nanofibers for Flexible Electronics. Small, 2018, 14, e1703521.	10.0	126
25	Design and Development of a Spherical Motor for Conformal Printing of Curved Electronics. IEEE Transactions on Industrial Electronics, 2018, 65, 9190-9200.	7.9	49
26	Electrohydrodynamic Direct-Writing for Flexible Electronic Manufacturing. , 2018, , .		18
27	Introduction of Electrohydrodynamic Printing. , 2018, , 1-29.		0
28	Mechano-electrospinning (MES). , 2018, , 31-65.		3
29	Helix Electrohydrodynamic Printing (HE-Printing). , 2018, , 67-88.		0
30	EHD Equipment and Applications. , 2018, , 157-194.		1
31	Inks for EHD Printing. , 2018, , 89-116.		2
32	Nozzles for EHD Printing. , 2018, , 117-132.		1
33	Experimental Study of the Influence of Ink Properties and Process Parameters on Ejection Volume in Electrohydrodynamic Jet Printing. Micromachines, 2018, 9, 522.	2.9	34
34	32.2: Multifunctional electrohydrodynamic printing and its industrial applications in flat panel display manufacturing. Digest of Technical Papers SID International Symposium, 2018, 49, 351-354.	0.3	2
35	The Conformal Design of an Island-Bridge Structure on a Non-Developable Surface for Stretchable Electronics. Micromachines, 2018, 9, 392.	2.9	33
36	Highâ€Performance, Micrometer Thick/Conformal, Transparent Metalâ€Network Electrodes for Flexible and Curved Electronic Devices. Advanced Materials Technologies, 2018, 3, 1800155.	5.8	36

#	Article	IF	CITATIONS
37	Control Method for EHD Printing. , 2018, , 133-156.		0
38	Theoretical and experimental study of 2D conformability of stretchable electronics laminated onto skin. Science China Technological Sciences, 2017, 60, 1415-1422.	4.0	31
39	Inâ€Plane Deformation Mechanics for Highly Stretchable Electronics. Advanced Materials, 2017, 29, 1604989.	21.0	141
40	Flexible small-channel thin-film transistors by electrohydrodynamic lithography. Nanoscale, 2017, 9, 19050-19057.	5.6	36
41	Buckling-driven self-assembly of self-similar inspired micro/nanofibers for ultra-stretchable electronics. Soft Matter, 2017, 13, 7244-7254.	2.7	25
42	Hyper-stretchable self-powered sensors based on electrohydrodynamically printed, self-similar piezoelectric nano/microfibers. Nano Energy, 2017, 40, 432-439.	16.0	150
43	Helix Electrohydrodynamic Printing of Highly Aligned Serpentine Micro/Nanofibers. Polymers, 2017, 9, 434.	4.5	37
44	Ultra-Stretchable Piezoelectric Nanogenerators via Large-Scale Aligned Fractal Inspired Micro/Nanofibers. Polymers, 2017, 9, 714.	4.5	26
45	Energy Harvesters for Wearable and Stretchable Electronics: From Flexibility to Stretchability. Advanced Materials, 2016, 28, 9881-9919.	21.0	407
46	Analytical investigation on thermal-induced warpage behavior of ultrathin chip-on-flex (UTCOF) assembly. Science China Technological Sciences, 2016, 59, 1646-1655.	4.0	5
47	Addressable multi-nozzle electrohydrodynamic jet printing with high consistency by multi-level voltage method. AIP Advances, 2015, 5, .	1.3	28
48	Near-field behavior of electrified jet under moving substrate constrains. AIP Advances, 2015, 5, .	1.3	20
49	A patterned ZnO nanorod array/gas sensor fabricated by mechanoelectrospinning-assisted selective growth. Chemical Communications, 2015, 51, 3117-3120.	4.1	41
50	Competing buckling of micro/nanowires on compliant substrates. Journal Physics D: Applied Physics, 2015, 48, 045302.	2.8	16
51	Electrohydrodynamically Printed, Flexible Energy Harvester Using Inâ€Situ Poled Piezoelectric Nanofibers. Energy Technology, 2015, 3, 351-358.	3.8	38
52	Highly sensitive, temperature-dependent gas sensor based on hierarchical ZnO nanorod arrays. Journal of Materials Chemistry C, 2015, 3, 11397-11405.	5.5	105
53	Elasticity of Fractal Inspired Interconnects. Small, 2015, 11, 367-373.	10.0	84
54	Non-wrinkled, highly stretchable piezoelectric devices by electrohydrodynamic direct-writing. Nanoscale, 2014, 6, 3289.	5.6	129

#	Article	IF	CITATIONS
55	Conformable amplified lead zirconate titanate sensors with enhanced piezoelectric response for cutaneous pressure monitoring. Nature Communications, 2014, 5, 4496.	12.8	757
56	Process Optimization of Mechano-Electrospinning by Response Surface Methodology. Journal of Nanoscience and Nanotechnology, 2014, 14, 3464-3472.	0.9	12
57	Versatile, kinetically controlled, high precision electrohydrodynamic writing of micro/nanofibers. Scientific Reports, 2014, 4, 5949.	3.3	70
58	Transfer printing and patterning of stretchable electrospun film. Thin Solid Films, 2013, 544, 152-156.	1.8	8
59	Electrohydrodynamic direct-writing. Nanoscale, 2013, 5, 12007.	5.6	202
60	Continuously Tunable and Oriented Nanofiber Direct-Written by Mechano-Electrospinning. Materials and Manufacturing Processes, 2012, 27, 1318-1323.	4.7	78
61	Controllable self-organization of colloid microarrays based on finite length effects of electrospun ribbons. Soft Matter, 2012, 8, 8302.	2.7	49
62	Inkjet printing for flexible electronics: Materials, processes and equipments. Science Bulletin, 2010, 55, 3383-3407.	1.7	249