List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9387132/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Multiplexed 3D cellular super-resolution imaging with DNA-PAINT and Exchange-PAINT. Nature Methods, 2014, 11, 313-318.	9.0	881
2	Single-Molecule Kinetics and Super-Resolution Microscopy by Fluorescence Imaging of Transient Binding on DNA Origami. Nano Letters, 2010, 10, 4756-4761.	4.5	716
3	Super-resolution microscopy with DNA-PAINT. Nature Protocols, 2017, 12, 1198-1228.	5.5	689
4	Single-molecule localization microscopy. Nature Reviews Methods Primers, 2021, 1, .	11.8	390
5	Tug-of-War in Motor Protein Ensembles Revealed with a Programmable DNA Origami Scaffold. Science, 2012, 338, 662-665.	6.0	383
6	The nucleolus functions as a phase-separated protein quality control compartment. Science, 2019, 365, 342-347.	6.0	348
7	Programmable self-assembly of three-dimensional nanostructures from 10,000 unique components. Nature, 2017, 552, 72-77.	13.7	335
8	Single-molecule super-resolution imaging of chromosomes and in situ haplotype visualization using Oligopaint FISH probes. Nature Communications, 2015, 6, 7147.	5.8	329
9	Quantitative super-resolution imaging with qPAINT. Nature Methods, 2016, 13, 439-442.	9.0	328
10	Polyhedra Self-Assembled from DNA Tripods and Characterized with 3D DNA-PAINT. Science, 2014, 344, 65-69.	6.0	299
11	The ALFA-tag is a highly versatile tool for nanobody-based bioscience applications. Nature Communications, 2019, 10, 4403.	5.8	278
12	DNA Origami as a Nanoscopic Ruler for Superâ€Resolution Microscopy. Angewandte Chemie - International Edition, 2009, 48, 8870-8873.	7.2	260
13	Submicrometre geometrically encoded fluorescent barcodes self-assembled from DNA. Nature Chemistry, 2012, 4, 832-839.	6.6	252
14	Timing molecular motion and production with a synthetic transcriptional clock. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, E784-93.	3.3	208
15	Optical imaging of individual biomolecules in densely packed clusters. Nature Nanotechnology, 2016, 11, 798-807.	15.6	204
16	Routing of individual polymers in designed patterns. Nature Nanotechnology, 2015, 10, 892-898.	15.6	189
17	Quantitative Analysis of Single Particle Trajectories: Mean Maximal Excursion Method. Biophysical Journal, 2010, 98, 1364-1372.	0.2	188
18	DNA-barcoded labeling probes for highly multiplexed Exchange-PAINT imaging. Chemical Science, 2017, 8, 3080-3091.	3.7	172

#	Article	IF	CITATIONS
19	DNA Origami Route for Nanophotonics. ACS Photonics, 2018, 5, 1151-1163.	3.2	171
20	Modified aptamers enable quantitative sub-10-nm cellular DNA-PAINT imaging. Nature Methods, 2018, 15, 685-688.	9.0	142
21	Localization microscopy at doubled precision with patterned illumination. Nature Methods, 2020, 17, 59-63.	9.0	138
22	Organellar Proteomics and Phospho-Proteomics Reveal Subcellular Reorganization in Diet-Induced Hepatic Steatosis. Developmental Cell, 2018, 47, 205-221.e7.	3.1	132
23	Multiplexed 3D super-resolution imaging of whole cells using spinning disk confocal microscopy and DNA-PAINT. Nature Communications, 2017, 8, 2090.	5.8	125
24	lsothermal Assembly of DNA Origami Structures Using Denaturing Agents. Journal of the American Chemical Society, 2008, 130, 10062-10063.	6.6	123
25	Rapid Sequential in Situ Multiplexing with DNA Exchange Imaging in Neuronal Cells and Tissues. Nano Letters, 2017, 17, 6131-6139.	4.5	116
26	Up to 100-fold speed-up and multiplexing in optimized DNA-PAINT. Nature Methods, 2020, 17, 789-791.	9.0	116
27	High-speed photography of compressed human trabecular bone correlates whitening to microscopic damage. Engineering Fracture Mechanics, 2007, 74, 1928-1941.	2.0	107
28	An order of magnitude faster DNA-PAINT imaging by optimized sequence design and buffer conditions. Nature Methods, 2019, 16, 1101-1104.	9.0	102
29	Molecular mechanism to recruit galectin-3 into multivesicular bodies for polarized exosomal secretion. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E4396-E4405.	3.3	98
30	Quantifying absolute addressability in DNA origami with molecular resolution. Nature Communications, 2018, 9, 1600.	5.8	97
31	Fast, Background-Free DNA-PAINT Imaging Using FRET-Based Probes. Nano Letters, 2017, 17, 6428-6434.	4.5	95
32	Live-cell super-resolved PAINT imaging of piconewton cellular traction forces. Nature Methods, 2020, 17, 1018-1024.	9.0	85
33	The bone diagnostic instrument II: Indentation distance increase. Review of Scientific Instruments, 2008, 79, 064303.	0.6	82
34	124-Color Super-resolution Imaging by Engineering DNA-PAINT Blinking Kinetics. Nano Letters, 2019, 19, 2641-2646.	4.5	82
35	Universal Superâ€Resolution Multiplexing by DNA Exchange. Angewandte Chemie - International Edition, 2017, 56, 4052-4055.	7.2	79
36	Direct Visualization of Single Nuclear Pore Complex Proteins Using Geneticallyâ€Encoded Probes for DNAâ€PAINT. Angewandte Chemie - International Edition, 2019, 58, 13004-13008.	7.2	77

#	Article	IF	CITATIONS
37	Siteâ€&pecific Labeling of Affimers for DNAâ€PAINT Microscopy. Angewandte Chemie - International Edition, 2018, 57, 11060-11063.	7.2	71
38	Flat-top TIRF illumination boosts DNA-PAINT imaging and quantification. Nature Communications, 2019, 10, 1268.	5.8	67
39	The centrosome protein AKNA regulates neurogenesis via microtubule organization. Nature, 2019, 567, 113-117.	13.7	67
40	Liquid–liquid phase separation underpins the formation of replication factories in rotaviruses. EMBO Journal, 2021, 40, e107711.	3.5	65
41	Template-free 2D particle fusion in localization microscopy. Nature Methods, 2018, 15, 781-784.	9.0	63
42	DNA origami demonstrate the unique stimulatory power of single pMHCs as T cell antigens. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	63
43	Circumvention of common labelling artefacts using secondary nanobodies. Nanoscale, 2020, 12, 10226-10239.	2.8	61
44	DNA origami-based nanoribbons: assembly, length distribution, and twist. Nanotechnology, 2011, 22, 275301.	1.3	59
45	Sub–100-nm metafluorophores with digitally tunable optical properties self-assembled from DNA. Science Advances, 2017, 3, e1602128.	4.7	58
46	Local strain and damage mapping in single trabeculae during three-point bending tests. Journal of the Mechanical Behavior of Biomedical Materials, 2011, 4, 523-534.	1.5	50
47	Peptide-PAINT Super-Resolution Imaging Using Transient Coiled Coil Interactions. Nano Letters, 2020, 20, 6732-6737.	4.5	49
48	Direct induction of microtubule branching by microtubule nucleation factor SSNA1. Nature Cell Biology, 2018, 20, 1172-1180.	4.6	48
49	Correlative Single-Molecule FRET and DNA-PAINT Imaging. Nano Letters, 2018, 18, 4626-4630.	4.5	47
50	DNA Origami as a Nanoscopic Ruler For Super-Resolution Microscopy. Biophysical Journal, 2010, 98, 184a.	0.2	43
51	Photo-Induced Depletion of Binding Sites in DNA-PAINT Microscopy. Molecules, 2018, 23, 3165.	1.7	43
52	DNA Origami Structures Directly Assembled from Intact Bacteriophages. Small, 2014, 10, 1765-1769.	5.2	39
53	DNA nanotechnology and fluorescence applications. Current Opinion in Biotechnology, 2016, 39, 41-47.	3.3	38
54	Site-Specifically-Labeled Antibodies for Super-Resolution Microscopy Reveal <i>In Situ</i> Linkage Errors. ACS Nano, 2021, 15, 12161-12170.	7.3	38

#	Article	IF	CITATIONS
55	Design Space for Complex DNA Structures. Journal of the American Chemical Society, 2013, 135, 18080-18088.	6.6	36
56	Nanometerâ€scale Multiplexed Superâ€Resolution Imaging with an Economic 3Dâ€DNAâ€PAINT Microscope. ChemPhysChem, 2018, 19, 3024-3034.	1.0	36
57	Toward Absolute Molecular Numbers in DNA-PAINT. Nano Letters, 2019, 19, 8182-8190.	4.5	33
58	Complex multicomponent patterns rendered on a 3D DNA-barrel pegboard. Nature Communications, 2020, 11, 5768.	5.8	33
59	Quantifying Reversible Surface Binding via Surface-Integrated Fluorescence Correlation Spectroscopy. Nano Letters, 2018, 18, 3185-3192.	4.5	32
60	3D particle averaging and detection of macromolecular symmetry in localization microscopy. Nature Communications, 2021, 12, 2847.	5.8	32
61	Quantitative single-protein imaging reveals molecular complex formation of integrin, talin, and kindlin during cell adhesion. Nature Communications, 2021, 12, 919.	5.8	31
62	Multiplexed Exchange-PAINT imaging reveals ligand-dependent EGFR and Met interactions in the plasma membrane. Scientific Reports, 2017, 7, 12150.	1.6	29
63	Single Particle Tracking and Super-Resolution Imaging of Membrane-Assisted Stop-and-Go Diffusion and Lattice Assembly of DNA Origami. ACS Nano, 2019, 13, 996-1002.	7.3	28
64	From DNA nanotechnology to synthetic biology. HFSP Journal, 2008, 2, 99-109.	2.5	25
65	The Effect of NaF In Vitro on the Mechanical and Material Properties of Trabecular and Cortical Bone. Advanced Materials, 2009, 21, 451-457.	11.1	25
66	Bacterially Derived Antibody Binders as Small Adapters for DNAâ€PAINT Microscopy. ChemBioChem, 2019, 20, 1032-1038.	1.3	25
67	Spatial centrosome proteome of human neural cells uncovers disease-relevant heterogeneity. Science, 2022, 376, .	6.0	25
68	Nanometrology and super-resolution imaging with DNA. MRS Bulletin, 2017, 42, 951-959.	1.7	24
69	Single-Molecule Super-Resolution Microscopy Reveals Heteromeric Complexes of MET and EGFR upon Ligand Activation. International Journal of Molecular Sciences, 2020, 21, 2803.	1.8	24
70	A Compact DNA Cube with Side Length 10 nm. Small, 2015, 11, 5200-5205.	5.2	22
71	Direct supercritical angle localization microscopy for nanometer 3D superresolution. Nature Communications, 2021, 12, 1180.	5.8	22
72	Super-resolved visualization of single DNA-based tension sensors in cell adhesion. Nature Communications, 2021, 12, 2510.	5.8	22

#	Article	IF	CITATIONS
73	Double―to Single‧trand Transition Induces Forces and Motion in DNA Origami Nanostructures. Advanced Materials, 2021, 33, e2101986.	11.1	22
74	Controlled Co-reconstitution of Multiple Membrane Proteins in Lipid Bilayer Nanodiscs Using DNA as a Scaffold. ACS Chemical Biology, 2015, 10, 2448-2454.	1.6	21
75	Nanoscale imaging in DNA nanotechnology. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2012, 4, 66-81.	3.3	20
76	Nanoscale Pattern Extraction from Relative Positions of Sparse 3D Localizations. Nano Letters, 2021, 21, 1213-1220.	4.5	19
77	Super-resolution imaging and estimation of protein copy numbers at single synapses with DNA-point accumulation for imaging in nanoscale topography. Neurophotonics, 2019, 6, 1.	1.7	19
78	Quantitative Assessment of Labeling Probes for Superâ€Resolution Microscopy Using Designer DNA Nanostructures. ChemPhysChem, 2021, 22, 911-914.	1.0	18
79	Tracking single particles for hours via continuous DNA-mediated fluorophore exchange. Nature Communications, 2021, 12, 4432.	5.8	18
80	Quantification of Strand Accessibility in Biostable DNA Origami with Single-Staple Resolution. ACS Nano, 2021, 15, 17668-17677.	7.3	18
81	Bayesian Multiple Emitter Fitting using Reversible Jump Markov Chain Monte Carlo. Scientific Reports, 2019, 9, 13791.	1.6	17
82	Direct Visualization of Single Nuclear Pore Complex Proteins Using Geneticallyâ€Encoded Probes for DNAâ€PAINT. Angewandte Chemie, 2019, 131, 13138-13142.	1.6	16
83	Visualization of Bacterial Protein Complexes Labeled with Fluorescent Proteins and Nanobody Binders for STED Microscopy. International Journal of Molecular Sciences, 2019, 20, 3376.	1.8	15
84	Dynamic host–guest interaction enables autonomous single molecule blinking and super-resolution imaging. Chemical Communications, 2019, 55, 14430-14433.	2.2	15
85	Biophysical Characterization of Copolymer-Protected Gene Vectors. Biomacromolecules, 2010, 11, 1802-1809.	2.6	14
86	nanoTRON: a Picasso module for MLP-based classification of super-resolution data. Bioinformatics, 2020, 36, 3620-3622.	1.8	14
87	Detecting structural heterogeneity in single-molecule localization microscopy data. Nature Communications, 2021, 12, 3791.	5.8	14
88	Formation and Healing of Micrometer-Sized Channel Networks on Highly Mobile Au(111) Surfaces. Langmuir, 2007, 23, 5459-5465.	1.6	11
89	Ortsspezifische Funktionalisierung von Affimeren für die DNAâ€PAINTâ€Mikroskopie. Angewandte Chemie, 2018, 130, 11226-11230.	1.6	11
90	Simultaneous Multicolor DNA-PAINT without Sequential Fluid Exchange Using Spectral Demixing. Nano Letters, 2022, 22, 2682-2690.	4.5	11

#	Article	IF	CITATIONS
91	Universelles Superauflösungsâ€Multiplexing durch DNAâ€Austausch. Angewandte Chemie, 2017, 129, 4111-4114.	1.6	8
92	Superâ€Resolution Spatial Proximity Detection with Proximityâ€PAINT. Angewandte Chemie - International Edition, 2021, 60, 716-720.	7.2	8
93	Quantitative Imaging With DNA-PAINT for Applications in Synaptic Neuroscience. Frontiers in Synaptic Neuroscience, 2021, 13, 798267.	1.3	4
94	The Role of Nanoscale Distribution of Fibronectin in the Adhesion of <i>Staphylococcus aureus</i> Studied by Protein Patterning and DNA-PAINT. ACS Nano, 2022, 16, 10392-10403.	7.3	4
95	Assembly and Microscopic Characterization of DNA Origami Structures. Advances in Experimental Medicine and Biology, 2012, 733, 87-96.	0.8	3
96	DNAâ€Barcoded Fluorescence Microscopy for Spatial Omics. Proteomics, 2020, 20, e1900368.	1.3	3
97	Calibration-free counting of low molecular copy numbers in single DNA-PAINT localization clusters. Biophysical Reports, 2021, 1, 100032.	0.7	2
98	DNA-Paint and Exchange-Paint for Multiplexed 3D Super-Resolution Microscopy. Biophysical Journal, 2015, 108, 477a.	0.2	1
99	Overcoming obstacles in localization microscopy. Nature Methods, 2016, 13, 301-302.	9.0	1
100	One Nanometer Precision by Bayesian Grouping of Localizations. Biophysical Journal, 2019, 116, 291a.	0.2	1
101	Correlating DNA-PAINT and single-molecule FRET for multiplexed super-resolution imaging. , 2020, , .		1
102	Towards <i>In Vivo</i> Nanomachines. Advances in Science and Technology, 0, , .	0.2	0
103	Artificial molecular switches made from DNA. Nucleic Acids Symposium Series, 2008, 52, 17-18.	0.3	0
104	Single-Molecule Digital Imaging with Molecular Resolution using DNA-Paint. Biophysical Journal, 2015, 108, 477a-478a.	0.2	0
105	Optical Imaging and Labelling of Individual Biomolecules in Dense Clusters. Biophysical Journal, 2018, 114, 186a.	0.2	0
106	Activation and Cross-Interaction of Receptor Tyrosine Kinases Studied by Single-Particle Tracking. Biophysical Journal, 2019, 116, 175a.	0.2	0
107	Super-Resolution Microscopy with DNA Molecules: Towards Localizomics. Biophysical Journal, 2019, 116, 6a.	0.2	0
108	Front Cover: DNAâ€Barcoded Fluorescence Microscopy for Spatial Omics. Proteomics, 2020, 20, 2070161.	1.3	0

#	Article	IF	CITATIONS
109	Superaufgelöste Erkennung rämlicher Näe mit Proximityâ€PAINT. Angewandte Chemie, 2021, 133, 726-731.	1.6	0
110	Nanoscopy Using Localization and Temporal Separation of Fluorescence From Single Molecules. NATO Science for Peace and Security Series B: Physics and Biophysics, 2011, , 87-106.	0.2	0