Rory Johnson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9387105/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Designing libraries for pooled CRISPR functional screens of long noncoding RNAs. Mammalian Genome, 2022, 33, 312-327.	1.0	2
2	Lessons from the functional characterization of IncRNAs: introduction to mammalian genome special issue. Mammalian Genome, 2022, , .	1.0	1
3	Paired guide RNA CRISPR-Cas9 screening for protein-coding genes and IncRNAs involved in transdifferentiation of human B-cells to macrophages. BMC Genomics, 2022, 23, .	1.2	7
4	GENCODE 2021. Nucleic Acids Research, 2021, 49, D916-D923.	6.5	633
5	Enhancing CRISPR deletion via pharmacological delay of DNA-PKcs. Genome Research, 2021, 31, 461-471.	2.4	9
6	Cancer LncRNA Census 2 (CLC2): an enhanced resource reveals clinical features of cancer lncRNAs. NAR Cancer, 2021, 3, zcab013.	1.6	21
7	Discovery of widespread transcription initiation at microsatellites predictable by sequence-based deep neural network. Nature Communications, 2021, 12, 3297.	5.8	11
8	Annotation of Full-Length Long Noncoding RNAs with Capture Long-Read Sequencing (CLS). Methods in Molecular Biology, 2021, 2254, 133-159.	0.4	3
9	Noncoding RNAs: biology and applications—a Keystone Symposia report. Annals of the New York Academy of Sciences, 2021, 1506, 118-141.	1.8	13
10	MapToCleave: High-throughput profiling of microRNA biogenesis in living cells. Cell Reports, 2021, 37, 110015.	2.9	18
11	CASPR, an analysis pipeline for single and paired guide RNA CRISPR screens, reveals optimal target selection for long non-coding RNAs. Bioinformatics, 2020, 36, 1673-1680.	1.8	12
12	Perspectives on ENCODE. Nature, 2020, 583, 693-698.	13.7	123
13	Expanded encyclopaedias of DNA elements in the human and mouse genomes. Nature, 2020, 583, 699-710.	13.7	1,252
14	Retrospective evaluation of whole exome and genome mutation calls in 746 cancer samples. Nature Communications, 2020, 11, 4748.	5.8	27
15	Sex differences in oncogenic mutational processes. Nature Communications, 2020, 11, 4330.	5.8	60
16	Analyses of non-coding somatic drivers in 2,658Âcancer whole genomes. Nature, 2020, 578, 102-111.	13.7	424
17	Pan-cancer analysis of whole genomes. Nature, 2020, 578, 82-93.	13.7	1,966
18	Cancer LncRNA Census reveals evidence for deep functional conservation of long noncoding RNAs in tumorigenesis. Communications Biology, 2020, 3, 56.	2.0	140

RORY JOHNSON

#	Article	IF	CITATIONS
19	Human vtRNA1-1 Levels Modulate Signaling Pathways and Regulate Apoptosis in Human Cancer Cells. Biomolecules, 2020, 10, 614.	1.8	24
20	LnCompare: gene set feature analysis for human long non-coding RNAs. Nucleic Acids Research, 2019, 47, W523-W529.	6.5	20
21	The Origins and the Biological Consequences of the Pur/Pyr DNA·RNA Asymmetry. CheM, 2019, 5, 1619-1631.	5.8	13
22	Global Positioning System: Understanding Long Noncoding RNAs through Subcellular Localization. Molecular Cell, 2019, 73, 869-883.	4.5	214
23	Hacking the Cancer Genome: Profiling Therapeutically Actionable Long Non-coding RNAs Using CRISPR-Cas9 Screening. Cancer Cell, 2019, 35, 545-557.	7.7	163
24	Ancient exapted transposable elements promote nuclear enrichment of human long noncoding RNAs. Genome Research, 2019, 29, 208-222.	2.4	64
25	GENCODE reference annotation for the human and mouse genomes. Nucleic Acids Research, 2019, 47, D766-D773.	6.5	2,350
26	Capturing a Long Look at Our Genetic Library. Cell Systems, 2018, 6, 153-155.	2.9	2
27	Towards a complete map of the human long non-coding RNA transcriptome. Nature Reviews Genetics, 2018, 19, 535-548.	7.7	451
28	Discovery of Cancer Driver Long Noncoding RNAs across 1112 Tumour Genomes: New Candidates and Distinguishing Features. Scientific Reports, 2017, 7, 41544.	1.6	98
29	LncATLAS database for subcellular localization of long noncoding RNAs. Rna, 2017, 23, 1080-1087.	1.6	230
30	High-throughput annotation of full-length long noncoding RNAs with capture long-read sequencing. Nature Genetics, 2017, 49, 1731-1740.	9.4	227
31	Scalable Design of Paired CRISPR Guide RNAs for Genomic Deletion. PLoS Computational Biology, 2017, 13, e1005341.	1.5	64
32	A Point Mutation in a lincRNA Upstream of GDNF Is Associated to a Canine Insensitivity to Pain: A Spontaneous Model for Human Sensory Neuropathies. PLoS Genetics, 2016, 12, e1006482.	1.5	31
33	Cytoplasmic long noncoding RNAs are frequently bound to and degraded at ribosomes in human cells. Rna, 2016, 22, 867-882.	1.6	194
34	DECKO: Single-oligo, dual-CRISPR deletion of genomic elements including long non-coding RNAs. BMC Genomics, 2015, 16, 846.	1.2	100
35	The human transcriptome across tissues and individuals. Science, 2015, 348, 660-665.	6.0	1,127
36	CARMEN, a human super enhancer-associated long noncoding RNA controlling cardiac specification, differentiation and homeostasis. Journal of Molecular and Cellular Cardiology, 2015, 89, 98-112.	0.9	223

RORY JOHNSON

#	Article	IF	CITATIONS
37	Evolution of selenophosphate synthetases: emergence and relocation of function through independent duplications and recurrent subfunctionalization. Genome Research, 2015, 25, 1256-1267.	2.4	46
38	Genome-wide profiling of the cardiac transcriptome after myocardial infarction identifies novel heart-specific long non-coding RNAs. European Heart Journal, 2015, 36, 353-368.	1.0	244
39	Transcriptome characterization by RNA sequencing identifies a major molecular and clinical subdivision in chronic lymphocytic leukemia. Genome Research, 2014, 24, 212-226.	2.4	175
40	The RIDL hypothesis: transposable elements as functional domains of long noncoding RNAs. Rna, 2014, 20, 959-976.	1.6	246
41	Functional importance of cardiac enhancer-associated noncoding RNAs in heart development and disease. Journal of Molecular and Cellular Cardiology, 2014, 76, 55-70.	0.9	124
42	A Genome-Wide Screen for Genetic Variants That Modify the Recruitment of REST to Its Target Genes. PLoS Genetics, 2012, 8, e1002624.	1.5	17
43	An integrated encyclopedia of DNA elements in the human genome. Nature, 2012, 489, 57-74.	13.7	15,516
44	Deep sequencing of subcellular RNA fractions shows splicing to be predominantly co-transcriptional in the human genome but inefficient for IncRNAs. Genome Research, 2012, 22, 1616-1625.	2.4	401
45	Chimeras taking shape: Potential functions of proteins encoded by chimeric RNA transcripts. Genome Research, 2012, 22, 1231-1242.	2.4	143
46	The GENCODE v7 catalog of human long noncoding RNAs: Analysis of their gene structure, evolution, and expression. Genome Research, 2012, 22, 1775-1789.	2.4	4,428
47	Neurodegeneration as an RNA disorder. Progress in Neurobiology, 2012, 99, 293-315.	2.8	52
48	Human long non-coding RNAs promote pluripotency and neuronal differentiation by association with chromatin modifiers and transcription factors. EMBO Journal, 2012, 31, 522-533.	3.5	461
49	Landscape of transcription in human cells. Nature, 2012, 489, 101-108.	13.7	4,484
50	Long non-coding RNAs in Huntington's disease neurodegeneration. Neurobiology of Disease, 2012, 46, 245-254.	2.1	356
51	New insights into non-coding RNA networks in Huntington's disease. Experimental Neurology, 2011, 231, 191-194.	2.0	7
52	Coassembly of REST and its cofactors at sites of gene repression in embryonic stem cells. Genome Research, 2011, 21, 1284-1293.	2.4	46
53	The Long Non-Coding RNAs: A New (P)layer in the "Dark Matterâ€, Frontiers in Genetics, 2011, 2, 107	1.1	113
54	Human accelerated region 1 noncoding RNA is repressed by REST in Huntington's disease. Physiological Genomics, 2010, 41, 269-274.	1.0	97

Rory Johnson

#	Article	IF	CITATIONS
55	The role of REST in transcriptional and epigenetic dysregulation in Huntington's disease. Neurobiology of Disease, 2010, 39, 28-39.	2.1	134
56	MacroRNA underdogs in a microRNA world: Evolutionary, regulatory, and biomedical significance of mammalian long non-protein-coding RNA. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2010, 1799, 597-615.	0.9	200
57	Genome-wide computational identification and manual annotation of human long noncoding RNA genes. Rna, 2010, 16, 1478-1487.	1.6	354
58	Regulation of neural macroRNAs by the transcriptional repressor REST. Rna, 2009, 15, 85-96.	1.6	90
59	Evolution of the Vertebrate Gene Regulatory Network Controlled by the Transcriptional Repressor REST. Molecular Biology and Evolution, 2009, 26, 1491-1507.	3.5	36
60	Gene Dysregulation in Huntington's Disease: REST, MicroRNAs and Beyond. NeuroMolecular Medicine, 2009, 11, 183-199.	1.8	104
61	Is REST a regulator of pluripotency?. Nature, 2009, 457, E5-E6.	13.7	51
62	Transcriptional dysregulation of coding and non-coding genes in cellular models of Huntington's disease. Biochemical Society Transactions, 2009, 37, 1270-1275.	1.6	59
63	A microRNA-based gene dysregulation pathway in Huntington's disease. Neurobiology of Disease, 2008, 29, 438-445.	2.1	338
64	REST Regulates Distinct Transcriptional Networks in Embryonic and Neural Stem Cells. PLoS Biology, 2008, 6, e256.	2.6	172
65	Identification of the REST regulon reveals extensive transposable element-mediated binding site duplication. Nucleic Acids Research, 2006, 34, 3862-3877.	6.5	121
66	Distinct Profiles of REST Interactions with Its Target Genes at Different Stages of Neuronal Development. Molecular Biology of the Cell, 2005, 16, 5630-5638.	0.9	157