Hui Joon Park

List of Publications by Year

 in descending orderSource: https:/|exaly.com/author-pdf/9387074/publications.pdf
Version: 2024-02-01

Enhanced interfacial characteristics of perovskite solar cell with multi-functional organic
hole-selective interlayer. Dyes and Pigments, 2022, 197, 109837.

Highly Efficient Bifacial Colorâ€đunable Perovskite Solar Cells. Advanced Optical Materials, 2022, 10, 2101696.

Manipulation of resonance orders and absorbing materials for structural colors in transmission with improved color purity. Optics Express, 2022, 30, 11740.

Synergistic Effect of Excited State Property and Aggregation Characteristic of Organic
4 Semiconductor on Efficient Holeâ€すransportation in Perovskite Device. Advanced Functional Materials,
$7.8 \quad 8$ 2021, 31, 2007180.

5 Laser-generated focused ultrasound transducer using a perforated photoacoustic lens for tissue characterization. Biomedical Optics Express, 2021, 12, 1375.

Defect-passivation of organometal trihalide perovskite with functionalized organic small molecule for enhanced device performance and stability. Dyes and Pigments, 2021, 189, 109255.
2.0

Angular selection of transmitted light and enhanced spontaneous emission in grating-coupled
hyperbolic metamaterials. Optics Express, 2021, 29, 21458-21472.
1.7

4
$8 \quad$ Nickel Oxide for Perovskite Photovoltaic Cells. Advanced Photonics Research, 2021, 2, 2000178.
9. Variable-focus optoacoustic lens with wide dynamic range and long focal length by using a flexible

9 polymer nano-composite membrane. Ultrasonics, 2021, 117, 106545.
Perovskite Photovoltaic Cells: Synergistic Effect of Excited State Property and Aggregation
10 Characteristic of Organic Semiconductor on Efficient Holeâ€đransportation in Perovskite Device (Adv.) Tj ETQq0 0 0.8gBT /Owerlock 10

11	Light absorption enhancement in ultrathin perovskite solar cells using light scattering of high-index dielectric nanospheres. Optics Express, 2021, 29, 35366.	1.7	6
12	Experimental Demonstration of a Stacked Hybrid Optoacoustic-Piezoelectric Transducer for Localized Heating and Enhanced Cavitation. Micromachines, 2021, 12, 1268.	1.4	0
13	Enhanced Gas Sensing Performance of Organic Fieldâ€Effect Transistors by Modulating the Dimensions of TriethylsilylethynylấAnthradithiophene Microcrystal Arrays. Advanced Materials Interfaces, 2020, 7, 1901696.	1.9	22

14 Wideâ€Bandgap Perovskite/Gallium Arsenide Tandem Solar Cells. Advanced Energy Materials, 2020, 10, 1903085. Electronics, 2020, 85, 105878.
Gas Sensors: Enhanced Gas Sensing Performance of Organic Fieldâ€Effect Transistors by Modulating the
19 Dimensions of Triethylsilylethynylâ€Anthradithiophene Microcrystal Arrays (Adv. Mater. Interfaces) Tj ETQq1 $10.784 \S 14$ rgBB/Overlo

21	Tailored Nanopatterning by Controlled Continuous Nanoinscribing with Tunable Shape, Depth, and Dimension. ACS Nano, 2019, 13, 11194-11202.	7.3	26
22	Laser-generated focused ultrasound transmitters with frequency-tuned outputs over sub-10-MHz range. Applied Physics Letters, 2019, 115, .	1.5	13
23	Observation of Enhanced Optical Spin Hall Effect in a Vertical Hyperbolic Metamaterial. ACS Photonics, 2019, 6, 2530-2536.	3.2	96
24	Bifacial Passivation of Organic Hole Transport Interlayer for NiO <i>_x</i>â€Based pấtiâ $€$ n Perovskite Solar Cells. Advanced Science, 2019, 6, 1802163.	5.6	92
25	Design of Polarization-Independent and Wide-Angle Broadband Absorbers for Highly Efficient Reflective Structural Color Filters. Materials, 2019, 12, 1050.	1.3	13
26	Light Intensity-dependent Variation in Defect Contributions to Charge Transport and Recombination in a Planar MAPbI3 Perovskite Solar Cell. Scientific Reports, 2019, 9, 19846.	1.6	45
27	Flexible High-Color-Purity Structural Color Filters Based on a Higher-Order Optical Resonance Suppression. Scientific Reports, 2019, 9, 14917.	1.6	52
28	Morphology and charge recombination effects on the performance of near-infrared photodetectors based on conjugated polymers. Organic Electronics, 2019, 64, 274-279.	1.4	13
29	Construction of dye-sensitized solar cells using wet chemical route synthesized MoSe2 counter electrode. Journal of Industrial and Engineering Chemistry, 2019, 69, 379-386.	2.9	18
30	Facile and cost-effective methodology to fabricate MoS 2 counter electrode for efficient dye-sensitized solar cells. Dyes and Pigments, 2018, 151, 7-14.	2.0	47
31	High-performance colorful semitransparent perovskite solar cells with phase-compensated microcavities. Nano Research, 2018, 11, 2553-2561.	5.8	41

32 Modulation of the effective density and refractive index of carbon nanotube forests via nanoimprint lithography. Carbon, 2018, 129, 8-14.
5.416

33 Photoacoustic Energy Sensor for Nanosecond Optical Pulse Measurement. Sensors, 2018, 18, 3879.
2.13

Improved Hydrogen Evolution Reaction Performance using MoS<sub>2<|sub>â€"WS<sub>2<|sub >
38 Heterostructures by Physicochemical Process. ACS Sustainable Chemistry and Engineering, 2018, 6,

41	Inverted planar perovskite solar cells with dopant free hole transporting material: Lewis base-assisted passivation and reduced charge recombination. Journal of Materials Chemistry A, 2017, 5, 13220-13227.	5.2
42	Omnidirectional Flexible Transmissive Structural Colors with Highâ€€olorâ€Purity and Highâ€Efficiency Exploiting Multicavity Resonances. Advanced Optical Materials, 2017, 5, 1700284.	3.6
43	Chitin and Chitosan Based Hybrid Nanocomposites for Super Capacitor Applications. Journal of Nanoscience and Nanotechnology, 2017, 17, 1321-1328.	0.9
44	Direct synthesis of thickness-tunable MoS2 quantum dot thin layers: Optical, structural and electrical properties and their application to hydrogen evolution. Nano Energy, 2017, 35, 101-114.	8.2
45	Holeâ€extraction layer dependence of defect formation and operation of planar CH <sub > 3 </sub > NH ₃ Pbl <sub > 3 </sub > perovskite solar cells. Physica Status Solidi - Rapid Research Letters, 2017, 11, 1600395.	1.2
46	Depth-resolved band alignments of perovskite solar cells with significant interfacial effects. Journal of Materials Chemistry A, 2017, 5, 2563-2571.	5.2
47	Enhanced Structural Distortions Allowing for Dicyanophenylâ€substituted Emitters with Outstanding Thermally Activated Delayed Fluorescence Characteristics. Bulletin of the Korean Chemical Society, 2017, 38, 1101-1104.	1.0

Incident-angle-controlled semitransparent colored perovskite solar cells with improved efficiency exploiting a multilayer dielectric mirror. Nanoscale, 2017, 9, 13983-13989.
2.8

40

Highly Efficient Colored Perovskite Solar Cells Integrated with Ultrathin Subwavelength Plasmonic Nanoresonators. Scientific Reports, 2017, 7, 10640.

Subwavelength nanocavity for flexible structural transmissive color generation with wide viewing
angle: publisherâ $€^{\mathrm{TM}}$ s note. Optica, 2017, 4, 345.
55 Journal of Nanomaterials, 2017, 2017, 1-8.

56 Neutral- and Multi-Colored Semitransparent Perovskite Solar Cells. Molecules, 2016, 21, 475.
1.7

56
57 Subwavelength nanocavity for flexible structural transmissive color generation with a wide viewing
angle. Optica, $2016,3,1489$.

58 N-phenylindole-diketopyrrolopyrrole-containing narrow band-gap materials for dopant-free hole 1.4 36 transporting layer of perovskite solar cell. Organic Electronics, 2016, 37, 134-140.

Nanoimprint Lithography: Angle-Insensitive and CMOS-Compatible Subwavelength Color Printing
(Advanced Optical Materials 11/2016). Advanced Optical Materials, 2016, 4, 1695-1695.
$3.6 \quad 1$

60 Colored dual-functional photovoltaic cells. Journal of Optics (United Kingdom), 2016, 18, 064003.
1.0

17
Shape-selective synthesis of NiO nanostructures for hydrazine
amperometric sensor. RSC Advances, 2016, 6, 86101-86107. 1.7 13
Interfacial Electronic Structure of Methylammonium Lead lodide Grown on a Mesoporous $62 \mathrm{TiO}<$ sub> $2<\mid$ sub> Layer on F-Doped Tin Oxide Substrate. Journal of Physical Chemistry C, 2016, 120, 1.5 11 22460-22465.
63 Angleâ€insensitive and CMOSâ€Compatible Subwavelength Color Printing. Advanced Optical Materials, 2016, 4, 1696-1702.
Solution-processed nickel oxide nanoparticles with NiOOH for hole injection layers of high-efficiencyorganic light-emitting diodes. Nanoscale, 2016, 8, 17608-17615.
Hybrid Metal-Halide Perovskite-MoS2 Phototransistor. Journal of Nanoscience and Nanotechnology,
Hybrid Metal-Halide Perovskite-MoS2 Phototransistor. Journal of Nanoscience and Nanotechnology, $65 \quad \begin{aligned} & \text { Hybrid Metal-Halide Perov } \\ & 2016,16,11722-11726 .\end{aligned}$ $65 \quad \begin{aligned} & \text { Hybrid Metal-Halide Perov } \\ & 2016,16,11722-11726 .\end{aligned}$
1.6 166
Solution-Processible Crystalline NiO Nanoparticles for High-Performance Planar Perovskite Photovoltaic Cells. Scientific Reports, 2016, 6, 30759. .01.017

$0.9 \quad 9$
0.9 91.642Investigation into the Advantages of Pure Perovskite Film without Pbl2 for High Performance Solar42
$67 \quad$ Cell. Scientific Reports, 2016, 6, 35994.Magnetic, structural and optical behavior of cupric oxide layers for solar cells. Journal of Alloys2.838and Compounds, 2016, 686, 616-627.Controlled Nanopores in Thin Films of Nonstoichiometrically Supramolecularly Assembled Graft
Copolymers. Chemistry - A European Journal, 2015, 21, 18375-18382.1.76
69Soft-Contact Printing of Nanoparticle-Based Nanoink for Functional Nanopatterns. Journal ofNanomaterials, 2015, 2015, 1-6.
All-Optical Ultrasound Transducer Using CNT-PDMS and Etalon Thin-Film Structure. IEEE Photonics
Journal, 2015, 7, 1-8.
73 Organic Photovoltaic Cells: From Performance Improvement to Manufacturing Processes. Small, 2015,
$11,2228-2246$.

74 Optical enhancement effects of plasmonic nanostructures on organic photovoltaic cells. Chinese

Investigation of Printingâ€Based Graded Bulkâ€Heterojunction Organic Solar Cells. Energy Technology,
1.8 2015, 3, 414-422.

Printed Nanostructures for Organic Photovoltaic Cells and Solutionâ€Processed Polymer
1.8

78 Nano-geometry dependent electrical property of organic semiconductor. Electronic Materials Letters,
Novel conjugated polymer for organic photovoltaics: Synthesis and device optimization. Synthetic
Metals, 2015, 199, 280-283. $2.1 \quad 3$Controlled Nanopores by Supramolecular Assembly of End-Functionalized Dendrimer andOptimization of polymer photovoltaic cells with bulk heterojunction layers hundreds of nanometersthick: modifying the morphology and cathode interface. Energy and Environmental Science, 2013, 6,
Advanced Heterojunction Structure of Polymer Photovoltaic Cell Generating High Photocurrentwith Internal Quantum Efficiency Approaching 100\%. Advanced Energy Materials, 2013, 3, 1135-1142.
10.2 28A new method to estimate thermal conductivity of polymer composite using characteristics of fillers.

Continuous Patterning of Nanogratings by Nanochannelâ€Guided Lithography on Liquid Resists.
Advanced Materials, 2011, 23, 4444-4448.
11.1

Transparent Cu nanowire mesh electrode on flexible substrates fabricated by transfer printing and its

