
Xiaohua He

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9386946/publications.pdf Version: 2024-02-01

Χιλομιλ Ης

#	Article	IF	CITATIONS
1	A Review on the Challenges for Increased Production of Castor. Agronomy Journal, 2012, 104, 853-880.	1.8	223
2	Host cell interactions of outer membrane vesicle-associated virulence factors of enterohemorrhagic Escherichia coli 0157: Intracellular delivery, trafficking and mechanisms of cell injury. PLoS Pathogens, 2017, 13, e1006159.	4.7	176
3	Virulence from vesicles: Novel mechanisms of host cell injury by Escherichia coli O104:H4 outbreak strain. Scientific Reports, 2015, 5, 13252.	3.3	122
4	Escherichia coli strains producing a novel Shiga toxin 2 subtype circulate in China. International Journal of Medical Microbiology, 2020, 310, 151377.	3.6	82
5	Identification and pathogenomic analysis of an Escherichia coli strain producing a novel Shiga toxin 2 subtype. Scientific Reports, 2018, 8, 6756.	3.3	79
6	Ricin Toxicokinetics and Its Sensitive Detection in Mouse Sera or Feces Using Immuno-PCR. PLoS ONE, 2010, 5, e12858.	2.5	52
7	Development of a Novel Immuno-PCR Assay for Detection of Ricin in Ground Beef, Liquid Chicken Egg, and Milk. Journal of Food Protection, 2010, 73, 695-700.	1.7	49
8	A Simple and Sensitive Assay for Distinguishing the Expression of Ricin andRicinus communisAgglutinin Genes in Developing Castor Seed (R. communisL.). Journal of Agricultural and Food Chemistry, 2005, 53, 2358-2361.	5.2	38
9	Sensitive Detection of Shiga Toxin 2 and Some of Its Variants in Environmental Samples by a Novel Immuno-PCR Assay. Applied and Environmental Microbiology, 2011, 77, 3558-3564.	3.1	38
10	Development and characterization of monoclonal antibodies against Shiga toxin 2 and their application for toxin detection in milk. Journal of Immunological Methods, 2013, 389, 18-28.	1.4	38
11	A Single-Step Purification and Molecular Characterization of Functional Shiga Toxin 2 Variants from Pathogenic Escherichia coli. Toxins, 2012, 4, 487-504.	3.4	37
12	Hypoxic Preconditioning Enhances the Efficacy of Mesenchymal Stem Cells-Derived Conditioned Medium in Switching Microglia toward Anti-inflammatory Polarization in Ischemia/Reperfusion. Cellular and Molecular Neurobiology, 2021, 41, 505-524.	3.3	35
13	New High-Affinity Monoclonal Antibodies against Shiga Toxin 1 Facilitate the Detection of Hybrid Stx1/Stx2 In Vivo. PLoS ONE, 2014, 9, e99854.	2.5	34
14	Effect of Food Matrices on the Biological Activity of Ricin. Journal of Food Protection, 2008, 71, 2053-2058.	1.7	33
15	Phage-mediated Shiga toxin (Stx) horizontal gene transfer and expression in non-Shiga toxigenic <i>Enterobacter</i> and <i>Escherichia coli</i> strains. Pathogens and Disease, 2016, 74, ftw037.	2.0	33
16	A Polyclonal Antibody Based Immunoassay Detects Seven Subtypes of Shiga Toxin 2 Produced by Escherichia coli in Human and Environmental Samples. PLoS ONE, 2013, 8, e76368.	2.5	31
17	Application of a Real Time Polymerase Chain Reaction Method to Detect Castor Toxin Contamination in Fluid Milk and Eggs. Journal of Agricultural and Food Chemistry, 2007, 55, 6897-6902.	5.2	29
18	Purification and Characterization of Shiga Toxin 2f, an Immunologically Unrelated Subtype of Shiga Toxin 2. PLoS ONE, 2013, 8, e59760.	2.5	29

Χιαόμμα Ηε

#	Article	lF	CITATIONS
19	Milk Inhibits the Biological Activity of Ricin. Journal of Biological Chemistry, 2012, 287, 27924-27929.	3.4	26
20	Detection of Shiga Toxins by Lateral Flow Assay. Toxins, 2015, 7, 1163-1173.	3.4	26
21	Structural and Functional Characterization of Stx2k, a New Subtype of Shiga Toxin 2. Microorganisms, 2020, 8, 4.	3.6	26
22	Detection of Castor Contamination by Real-Time Polymerase Chain Reaction. Journal of Agricultural and Food Chemistry, 2007, 55, 545-550.	5.2	25
23	An Environmental Shiga Toxin-Producing Escherichia coli O145 Clonal Population Exhibits High-Level Phenotypic Variation That Includes Virulence Traits. Applied and Environmental Microbiology, 2016, 82, 1090-1101.	3.1	25
24	Volatile compounds and odor traits of dry-cured ham (Prosciutto crudo) irradiated by electron beam and gamma rays. Radiation Physics and Chemistry, 2017, 130, 265-272.	2.8	25
25	Mouse in Vivo Neutralization of Escherichia coli Shiga Toxin 2 with Monoclonal Antibodies. Toxins, 2013, 5, 1845-1858.	3.4	24
26	A New Immunoassay for Detecting All Subtypes of Shiga Toxins Produced by Shiga Toxin-Producing E. coli in Ground Beef. PLoS ONE, 2016, 11, e0148092.	2.5	22
27	Development of Monoclonal Antibodies and Immunoassays for Sensitive and Specific Detection of Shiga Toxin Stx2f. PLoS ONE, 2013, 8, e76563.	2.5	20
28	Detoxification of castor meal through reactive seed crushing. Industrial Crops and Products, 2013, 43, 194-199.	5.2	19
29	Safe and Effective Means of Detecting and Quantitating Shiga-Like Toxins in Attomole Amounts. Analytical Chemistry, 2014, 86, 4698-4706.	6.5	19
30	Serum Shiga toxin 2 values in patients during acute phase of diarrhoeaâ€associated haemolytic uraemic syndrome. Acta Paediatrica, International Journal of Paediatrics, 2015, 104, e564-8.	1.5	19
31	Particulate Shiga Toxin 2 in Blood is Associated to the Development of Hemolytic Uremic Syndrome in Children. Thrombosis and Haemostasis, 2020, 120, 107-120.	3.4	16
32	An <i>In Vitro</i> Combined Antibiotic-Antibody Treatment Eliminates Toxicity from Shiga Toxin-Producing Escherichia coli. Antimicrobial Agents and Chemotherapy, 2015, 59, 5435-5444.	3.2	15
33	Mass Spectrometry-Based Method of Detecting and Distinguishing Type 1 and Type 2 Shiga-Like Toxins in Human Serum. Toxins, 2015, 7, 5236-5253.	3.4	14
34	Validation of a Cell-Free Translation Assay for Detecting Shiga Toxin 2 in Bacterial Culture. Journal of Agricultural and Food Chemistry, 2009, 57, 5084-5088.	5.2	13
35	An Improved Method for the Sensitive Detection of Shiga Toxin 2 in Human Serum. Toxins, 2018, 10, 59.	3.4	13
36	lmmuno-PCR Assay for Sensitive Detection of Proteins in Real Time. Methods in Molecular Biology, 2015, 1318, 139-148.	0.9	12

Хіаониа Не

#	Article	IF	CITATIONS
37	Detection of Abrin Holotoxin Using Novel Monoclonal Antibodies. Toxins, 2017, 9, 386.	3.4	12
38	Prevalence and Genetic Analysis of Chromosomal mcr-3/7 in Aeromonas From U.S. Animal-Derived Samples. Frontiers in Microbiology, 2021, 12, 667406.	3.5	12
39	A High-Throughput, Precipitating Colorimetric Sandwich ELISA Microarray for Shiga Toxins. Toxins, 2014, 6, 1855-1872.	3.4	11
40	Differential induction of Shiga toxin in environmental Escherichia coli O145:H28 strains carrying the same genotype as the outbreak strains. International Journal of Food Microbiology, 2021, 339, 109029.	4.7	10
41	Microwave Heating Inactivates Shiga Toxin (Stx2) in Reconstituted Fat-Free Milk and Adversely Affects the Nutritional Value of Cell Culture Medium. Journal of Agricultural and Food Chemistry, 2014, 62, 3301-3305.	5.2	9
42	Toxin Content of Commercial Castor Cultivars. JAOCS, Journal of the American Oil Chemists' Society, 2014, 91, 1515-1519.	1.9	9
43	Soluble Toll-Like Receptor 4 Impairs the Interaction of Shiga Toxin 2a with Human Serum Amyloid P Component. Toxins, 2018, 10, 379.	3.4	9
44	Screening for the presence of mcr-1/mcr-2 genes in Shiga toxin-producing Escherichia coli recovered from a major produce-production region in California. PLoS ONE, 2017, 12, e0187827.	2.5	9
45	New Stx2e Monoclonal Antibodies for Immunological Detection and Distinction of Stx2 Subtypes. PLoS ONE, 2015, 10, e0132419.	2.5	8
46	New Monoclonal Antibodies against a Novel Subtype of Shiga Toxin 1 Produced by Enterobacter cloacae and Their Use in Analysis of Human Serum. MSphere, 2016, 1, .	2.9	8
47	Abrin Toxicity and Bioavailability after Temperature and pH Treatment. Toxins, 2017, 9, 320.	3.4	8
48	Development of novel antibodies for detection of mobile colistin-resistant bacteria contaminated in meats. Scientific Reports, 2018, 8, 16744.	3.3	8
49	Evaluation and comparison of three enzyme-linked immunosorbent assay formats for the detection of ricin in milk and serum. Biocatalysis and Agricultural Biotechnology, 2012, 1, 105-109.	3.1	7
50	Reducing the toxicity of castor seed meal through processing treatments. Biocatalysis and Agricultural Biotechnology, 2013, 2, 159-161.	3.1	7
51	Plant Compounds Enhance the Assay Sensitivity for Detection of Active Bacillus cereus Toxin. Toxins, 2015, 7, 835-845.	3.4	7
52	Rapid and Label-Free Immunosensing of Shiga Toxin Subtypes with Surface Plasmon Resonance Imaging. Toxins, 2020, 12, 280.	3.4	7
53	Low prevalence of mobile colistin-resistance in U.S. meat, catfish, poultry and genomic characterization of a mcr-1 positive Escherichia coli strain. Food Control, 2020, 118, 107434.	5.5	7
54	DNA adenine methylase, not the Pstl restriction-modification system, regulates virulence gene expression in Shiga toxin-producing Escherichia coli. Food Microbiology, 2021, 96, 103722.	4.2	7

Χιαοήμα Ηε

#	Article	IF	CITATIONS
55	Shiga toxins. , 2017, , .		6
56	Complete Genome Sequence of a Shiga Toxin-Producing Enterobacter cloacae Clinical Isolate. Genome Announcements, 2017, 5, .	0.8	6
57	Soluble Free, Soluble Conjugated, and Insoluble Bound Phenolics in Tomato Seeds and Their Radical Scavenging and Antiproliferative Activities. Journal of Agricultural and Food Chemistry, 2022, 70, 9039-9047.	5.2	6
58	Novel monoclonal antibodies against Stx1d and 1e and their use for improving immunoassays. Journal of Immunological Methods, 2017, 447, 52-56.	1.4	5
59	Alternative to Animal Use for Detecting Biologically Active Staphylococcal Enterotoxin Type A. Toxins, 2018, 10, 540.	3.4	5
60	Secretome of Mesenchymal Stem Cells from Consecutive Hypoxic Cultures Promotes Resolution of Lung Inflammation by Reprogramming Anti-Inflammatory Macrophages. International Journal of Molecular Sciences, 2022, 23, 4333.	4.1	5
61	Analysis of Castor by ELISAs that Distinguish Ricin and <i>Ricinus communis</i> agglutinin (RCA). JAOCS, Journal of the American Oil Chemists' Society, 2016, 93, 359-363.	1.9	4
62	A Monoclonal–Monoclonal Antibody Based Capture ELISA for Abrin. Toxins, 2017, 9, 328.	3.4	4
63	T cell Receptor Vβ9 in Method for Rapidly Quantifying Active Staphylococcal Enterotoxin Type-A without Live Animals. Toxins, 2019, 11, 399.	3.4	4
64	Evaluation of Castor Oil Samples for Potential Toxin Contamination. JAOCS, Journal of the American Oil Chemists' Society, 2016, 93, 299-301.	1.9	3
65	Validation of a Cell-Based Assay for Detection of Active Shiga Toxins Produced by Escherichia coli in Water. International Journal of Environmental Research and Public Health, 2020, 17, 7901.	2.6	3
66	Improved method for extraction of castor seed for toxin determination. Biocatalysis and Agricultural Biotechnology, 2016, 5, 56-57.	3.1	2
67	Genomic Insight into Natural Inactivation of Shiga Toxin 2 Production in an EnvironmentalEscherichia coliStrain Producing Shiga Toxin 1. Foodborne Pathogens and Disease, 2020, 17, 555-567.	1.8	2
68	Human Leukemia T-Cell Lines as Alternatives to Animal Use for Detecting Biologically Active Staphylococcal Enterotoxin Type B. Toxins, 2021, 13, 300.	3.4	1
69	Detection Methods for Shiga Toxins and Shiga Toxin-Producing E. coli. , 2017, , 77-100.		1
70	Incorporation of laurate and hydroxylaurate into phosphatidylcholines and acylglycerols in castor microsomes. JAOCS, Journal of the American Oil Chemists' Society, 2005, 82, 495-499.	1.9	0
71	Significant Threats to Human Health. , 2017, , 63-75.		0
72	Conclusions and a Glimpse into the Future. , 2017, , 101-113.		0

72 Conclusions and a Glimpse into the Future. , 2017, , 101-113.

#	Article	IF	CITATIONS
73	Moving Chemistry from Bench to Market: An Introduction to the Agricultural and Food Chemistry Technical Program at the 260th American Chemical Society Fall 2020 Virtual Meeting & Expo. Journal of Agricultural and Food Chemistry, 2021, 69, 13255-13259.	5.2	0