Muhammad Ali

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9386758/publications.pdf

Version: 2024-02-01

159358 174990 3,214 79 30 citations h-index papers

g-index 80 80 80 2952 docs citations times ranked citing authors all docs

52

#	Article	IF	CITATIONS
1	The Plant Heat Stress Transcription Factors (HSFs): Structure, Regulation, and Function in Response to Abiotic Stresses. Frontiers in Plant Science, 2016, 7, 114.	1.7	485
2	Heat Shock Proteins: Dynamic Biomolecules to Counter Plant Biotic and Abiotic Stresses. International Journal of Molecular Sciences, 2019, 20, 5321.	1.8	260
3	Melatonin and Its Effects on Plant Systems. Molecules, 2018, 23, 2352.	1.7	157
4	Mechanisms Regulating the Dynamics of Photosynthesis Under Abiotic Stresses. Frontiers in Plant Science, 2020, 11, 615942.	1.7	141
5	Genome-wide analysis of the CaHsp20 gene family in pepper: comprehensive sequence and expression profile analysis under heat stress. Frontiers in Plant Science, 2015, 6, 806.	1.7	97
6	Genome-wide analysis, expression profile of heat shock factor gene family (CaHsfs) and characterisation of CaHsfA2 in pepper (Capsicum annuum L.). BMC Plant Biology, 2015, 15, 151.	1.6	96
7	The CBL–CIPK Pathway in Plant Response to Stress Signals. International Journal of Molecular Sciences, 2020, 21, 5668.	1.8	81
8	A Novel Peroxidase CanPOD Gene of Pepper Is Involved in Defense Responses to Phytophtora capsici Infection as well as Abiotic Stress Tolerance. International Journal of Molecular Sciences, 2013, 14, 3158-3177.	1.8	79
9	Characterization of CaHsp70-1, a Pepper Heat-Shock Protein Gene in Response to Heat Stress and Some Regulation Exogenous Substances in Capsicum annuum L International Journal of Molecular Sciences, 2014, 15, 19741-19759.	1.8	76
10	Genome-Wide Identification and Analysis of the SBP-Box Family Genes under Phytophthora capsici Stress in Pepper (Capsicum annuum L.). Frontiers in Plant Science, 2016, 7, 504.	1.7	73
11	A small heat shock protein CaHsp25.9 positively regulates heat, salt, and drought stress tolerance in pepper (Capsicum annuum L.). Plant Physiology and Biochemistry, 2019, 142, 151-162.	2.8	73
12	Genome-wide analysis of the Hsp70 family genes in pepper (Capsicum annuum L.) and functional identification of CaHsp70-2 involvement in heat stress. Plant Science, 2016, 252, 246-256.	1.7	72
13	CaHSP16.4, a small heat shock protein gene in pepper, is involved in heat and drought tolerance. Protoplasma, 2019, 256, 39-51.	1.0	57
14	Identification of CBL and CIPK gene families and functional characterization of CaCIPK1 under Phytophthora capsici in pepper (Capsicum annuum L.). BMC Genomics, 2019, 20, 775.	1.2	57
15	A New Ethylene-Responsive Factor CaPTI1 Gene of Pepper (Capsicum annuum L.) Involved in the Regulation of Defense Response to Phytophthora capsici. Frontiers in Plant Science, 2016, 6, 1217.	1.7	51
16	Genome-wide analysis of dirigent gene family in pepper (Capsicum annuum L.) and characterization of CaDIR7 in biotic and abiotic stresses. Scientific Reports, 2018, 8, 5500.	1.6	51
17	Genome-wide identification of the AP2/ERF transcription factor family in pepper (<i>Capsicum) Tj ETQq$1\ 1\ 0.78$4</i>	1314 rgBT 0.9	/Oyerlock 10
18	A Novel F-Box Protein CaF-Box Is Involved in Responses to Plant Hormones and Abiotic Stress in Pepper (Capsicum annuum L.). International Journal of Molecular Sciences, 2014, 15, 2413-2430.	1.8	49

#	Article	IF	Citations
19	Characterization and expression profile of CaNAC2 pepper gene. Frontiers in Plant Science, 2015, 6, 755.	1.7	46
20	Reduced tolerance to abiotic stress in transgenic Arabidopsis overexpressing a Capsicum annuummultiprotein bridging factor 1. BMC Plant Biology, 2014, 14, 138.	1.6	44
21	The Arabidopsis SMALL AUXIN UP RNA32 Protein Regulates ABA-Mediated Responses to Drought Stress. Frontiers in Plant Science, 2021, 12, 625493.	1.7	44
22	Characteristic of the Pepper CaRGA2 Gene in Defense Responses against Phytophthora capsici Leonian. International Journal of Molecular Sciences, 2013, 14, 8985-9004.	1.8	42
23	A Further Analysis of the Relationship between Yellow Ripe-Fruit Color and the Capsanthin-Capsorubin Synthase Gene in Pepper (Capsicum sp.) Indicated a New Mutant Variant in C. annuum and a Tandem Repeat Structure in Promoter Region. PLoS ONE, 2013, 8, e61996.	1.1	41
24	Defence responses of pepper (Capsicum annuum L.) infected with incompatible and compatible strains of Phytophthora capsici. European Journal of Plant Pathology, 2013, 136, 625-638.	0.8	40
25	The combination of arbuscular mycorrhizal fungi inoculation (⟨i⟩Glomus versiforme⟨ i⟩) and 28â€homobrassinolide spraying intervals improves growth by enhancing photosynthesis, nutrient absorption, and antioxidant system in cucumber (⟨i⟩Cucumis sativus⟨ i⟩ L.) under salinity. Ecology and Evolution, 2018, 8, 5724-5740.	0.8	39
26	Suppression Subtractive Hybridization Analysis of Genes Regulated by Application of Exogenous Abscisic Acid in Pepper Plant (Capsicum annuum L.) Leaves under Chilling Stress. PLoS ONE, 2013, 8, e66667.	1.1	38
27	A systematic in silico prediction of gibberellic acid stimulated GASA family members: A novel small peptide contributes to floral architecture and transcriptomic changes induced by external stimuli in rice. Journal of Plant Physiology, 2019, 234-235, 117-132.	1.6	37
28	Genome-Wide Identification, Expression Diversication of Dehydrin Gene Family and Characterization of CaDHN3 in Pepper (Capsicum annuum L.). PLoS ONE, 2016, 11, e0161073.	1.1	35
29	Classification and Genome-Wide Analysis of Chitin-Binding Proteins Gene Family in Pepper (Capsicum) Tj ETQq1 1 Applications. International Journal of Molecular Sciences, 2018, 19, 2216.		4 rgBT /Ovei 35
30	Silencing of dehydrin CaDHN1 diminishes tolerance to multiple abiotic stresses in Capsicum annuum L Plant Cell Reports, 2015, 34, 2189-2200.	2.8	32
31	The CaCIPK3 gene positively regulates drought tolerance in pepper. Horticulture Research, 2021, 8, 216.	2.9	31
32	VIGS approach reveals the modulation of anthocyanin biosynthetic genes by CaMYB in chili pepper leaves. Frontiers in Plant Science, 2015, 6, 500.	1.7	30
33	Knockdown of CaHSP60-6 confers enhanced sensitivity to heat stress in pepper (Capsicum annuum L.). Planta, 2019, 250, 2127-2145.	1.6	29
34	A Novel Transcription Factor CaSBP12 Gene Negatively Regulates the Defense Response against Phytophthora capsici in Pepper (Capsicum annuum L.). International Journal of Molecular Sciences, 2019, 20, 48.	1.8	29
35	PIF4 negatively modulates cold tolerance in tomato anthers via temperature-dependent regulation of tapetal cell death. Plant Cell, 2021, 33, 2320-2339.	3.1	27
36	Melatonin Mitigates the Infection of Colletotrichum gloeosporioides via Modulation of the Chitinase Gene and Antioxidant Activity in Capsicum annuum L. Antioxidants, 2021, 10, 7.	2.2	26

#	Article	IF	Citations
37	Involvement of a universal amino acid synthesis impediment in cytoplasmic male sterility in pepper. Scientific Reports, 2016, 6, 23357.	1.6	25
38	Development of a SCAR marker for early identification of S-cytoplasm based on mitochondrial SRAP analysis in pepper (Capsicum annuum L.). Molecular Breeding, 2014, 33, 679-690.	1.0	24
39	RNA N6-Methyladenosine Responds to Low-Temperature Stress in Tomato Anthers. Frontiers in Plant Science, 2021, 12, 687826.	1.7	24
40	Silencing of the CaCP Gene Delays Salt- and Osmotic-Induced Leaf Senescence in Capsicum annuum L International Journal of Molecular Sciences, 2014, 15, 8316-8334.	1.8	22
41	Comparative in Silico Analysis of Ferric Reduction Oxidase (FRO) Genes Expression Patterns in Response to Abiotic Stresses, Metal and Hormone Applications. Molecules, 2018, 23, 1163.	1.7	21
42	Chitinase Gene Positively Regulates Hypersensitive and Defense Responses of Pepper to Colletotrichum acutatum Infection. International Journal of Molecular Sciences, 2020, 21, 6624.	1.8	20
43	Early transcriptional response of terpenoid metabolism to Colletotrichum gloeosporioides in a resistant wild strawberry Fragaria nilgerrensis. Phytochemistry, 2021, 181, 112590.	1.4	20
44	Effects of drought stress on capsanthin during fruit development and ripening in pepper (Capsicum) Tj ETQq0 0	0 rgBT /0	verlock 10 Tf
45	Cloning and characterisation of a pepper aquaporin, CaAQP, which reduces chilling stress in transgenic tobacco plants. Plant Cell, Tissue and Organ Culture, 2014, 118, 431-444.	1.2	18
46	The CaAP2/ERF064 Regulates Dual Functions in Pepper: Plant Cell Death and Resistance to Phytophthora capsici. Genes, 2019, 10, 541.	1.0	18
47	The CaChiVl2 Gene of Capsicum annuum L. Confers Resistance Against Heat Stress and Infection of Phytophthora capsici. Frontiers in Plant Science, 2020, 11, 219.	1.7	18
48	Phytochrome interacting factor 3 regulates pollen mitotic division through auxin signalling and sugar metabolism pathways in tomato. New Phytologist, 2022, 234, 560-577.	3.5	18
49	Long non-coding RNA transcriptome landscape of anthers at different developmental stages in response to drought stress in tomato. Genomics, 2022, 114, 110383.	1.3	17
50	Identification of Pepper CaSBP08 Gene in Defense Response Against Phytophthora capsici Infection. Frontiers in Plant Science, 2020, 11, 183.	1.7	16
51	Morpho-Physiological and Transcriptome Changes in Tomato Anthers of Different Developmental Stages under Drought Stress. Cells, 2021, 10, 1809.	1.8	16
52	The CBL-interacting protein kinase CaCIPK13 positively regulates defence mechanisms against cold stress in pepper. Journal of Experimental Botany, 2022, 73, 1655-1667.	2.4	16
53	The pepper MYB transcription factor CaMYB306 accelerates fruit coloration and negatively regulates cold resistance. Scientia Horticulturae, 2022, 295, 110892.	1.7	16
54	Knockdown of the chitin-binding protein family gene CaChilV1 increased sensitivity to Phytophthora capsici and drought stress in pepper plants. Molecular Genetics and Genomics, 2019, 294, 1311-1326.	1.0	15

#	Article	IF	CITATIONS
55	CaHsfA1d Improves Plant Thermotolerance via Regulating the Expression of Stress- and Antioxidant-Related Genes. International Journal of Molecular Sciences, 2020, 21, 8374.	1.8	15
56	Modified expression of a heat shock protein gene, CaHSP22.0, results in high sensitivity to heat and salt stress in pepper (Capsicum annuum L.). Scientia Horticulturae, 2019, 249, 364-373.	1.7	14
57	Biochar Integration with Legume Crops in Summer Gape Synergizes Nitrogen Use Efficiency and Enhance Maize Yield. Agronomy, 2020, 10, 58.	1.3	14
58	Overexpression of the CaTIP1-1 Pepper Gene in Tobacco Enhances Resistance to Osmotic Stresses. International Journal of Molecular Sciences, 2014, 15, 20101-20116.	1.8	13
59	A CMS-Related Gene, Î ⁻ atp6-2, Causes Increased ATP Hydrolysis Activity of the Mitochondrial F1Fo-ATP Synthase and Induces Male Sterility in Pepper (Capsicum annuum L.). Plant Molecular Biology Reporter, 2014, 32, 888-899.	1.0	13
60	Cloning and expression analysis of CaPIP1-1 gene in pepper (Capsicum annuum L.). Gene, 2015, 563, 87-93.	1.0	13
61	Contribution of CaBPM4, a BTB Domain–Containing Gene, to the Response of Pepper to Phytophthora capsici Infection and Abiotic Stresses. Agronomy, 2019, 9, 417.	1.3	12
62	CaMYC, A Novel Transcription Factor, Regulates Anthocyanin Biosynthesis in Color-leaved Pepper (Capsicum annuum L.). Journal of Plant Growth Regulation, 2019, 38, 574-585.	2.8	12
63	Cloning and characterization of the pepper CaPAO gene for defense responses to salt-induced leaf senescence. BMC Biotechnology, 2015, 15, 100.	1.7	11
64	Variation in leaf color and combine effect of pigments on physiology and resistance to whitefly of pepper (Capsicum annuum L.). Scientia Horticulturae, 2018, 229, 215-225.	1.7	11
65	Comprehensive transcriptome-based characterization of differentially expressed genes involved in carotenoid biosynthesis of different ripening stages of Capsicum. Scientia Horticulturae, 2021, 288, 110311.	1.7	11
66	Assessing the functional role of color-related CaMYB gene under cold stress using virus-induced gene silencing in the fruit of pepper (Capsicum annuum L.). Scientia Horticulturae, 2020, 272, 109504.	1.7	10
67	Transcription Factor CaSBP12 Negatively Regulates Salt Stress Tolerance in Pepper (Capsicum annuum) Tj ETQq1	1.0.7843 1.8	14.rgBT/Ov
68	A novel gene, CaATHB-12, negatively regulates fruit carotenoid content under cold stress in Capsicum annuum. Food and Nutrition Research, 2020, 64, .	1.2	9
69	CaSBP11 Participates in the Defense Response of Pepper to Phytophthora capsici through Regulating the Expression of Defense-Related Genes. International Journal of Molecular Sciences, 2020, 21, 9065.	1.8	8
70	Mitogen-activated protein kinase 4 is obligatory for late pollen and early fruit development in tomato. Horticulture Research, 2022, 9, uhac048.	2.9	8
71	Analysis of tandem repeat units of the promoter of capsanthin/capsorubin synthase (Ccs) gene in pepper fruit. Physiology and Molecular Biology of Plants, 2017, 23, 685-691.	1.4	7
72	The Protective Role of 28-Homobrassinolide and Glomus versiforme in Cucumber to Withstand Saline Stress. Plants, 2020, 9, 42.	1.6	6

#	Article	IF	CITATION
73	CaHSP18.1a, a Small Heat Shock Protein from Pepper (Capsicum annuum L.), Positively Responds to Heat, Drought, and Salt Tolerance. Horticulturae, 2021, 7, 117.	1.2	6
74	CaFtsH06, A Novel Filamentous Thermosensitive Protease Gene, Is Involved in Heat, Salt, and Drought Stress Tolerance of Pepper (Capsicum annuum L.). International Journal of Molecular Sciences, 2021, 22, 6953.	1.8	5
75	CanTF, a Novel Transcription Factor in Pepper, Is Involved in Resistance to Phytophthora capsici as well as Abiotic Stresses. Plant Molecular Biology Reporter, 2018, 36, 776-789.	1.0	4
76	First Report of Colletotrichum gloeosporioides Causing Anthracnose on Pepper in Shaanxi Province, China. Plant Disease, 2021, , PDIS-01-21-0123.	0.7	4
77	Leaf-color mutation induced by ethyl methane sulfonate and genetic and physio-biochemical characterization of leaf-color mutants in pepper (Capsicum annuum L.). Scientia Horticulturae, 2019, 257, 108709.	1.7	3
78	Identification of Fruit Traits Related QTLs and a Candidate Gene, CaBRX, Controlling Locule Number in Pepper (Capsicum annuum L.). Horticulturae, 2022, 8, 146.	1.2	1
79	PERFORMANCE OF EXOTIC TULIP CULTIVARS UNDER AGROCLIMATIC CONDITIONS OF PESHAWAR. Journal of Bioresource Management, 2015, 2, .	0.4	O