Jean-Olivier Durand

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9386633/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Modelling one- and two-dimensional solid-state NMR spectra. Magnetic Resonance in Chemistry, 2002, 40, 70-76.	1.9	3,565
2	Silica-based nanoparticles for photodynamic therapy applications. Nanoscale, 2010, 2, 1083.	5.6	251
3	Syntheses and applications of periodic mesoporous organosilica nanoparticles. Nanoscale, 2015, 7, 20318-20334.	5.6	232
4	Mannoseâ€Functionalized Mesoporous Silica Nanoparticles for Efficient Twoâ€Photon Photodynamic Therapy of Solid Tumors. Angewandte Chemie - International Edition, 2011, 50, 11425-11429.	13.8	226
5	Mannose-targeted mesoporous silica nanoparticles for photodynamic therapy. Chemical Communications, 2009, , 1475.	4.1	219
6	Biodegradable Ethyleneâ€Bis(Propyl)Disulfideâ€Based Periodic Mesoporous Organosilica Nanorods and Nanospheres for Efficient Inâ€Vitro Drug Delivery. Advanced Materials, 2014, 26, 6174-6180.	21.0	212
7	Large pore mesoporous silica nanomaterials for application in delivery of biomolecules. Nanoscale, 2015, 7, 2199-2209.	5.6	194
8	Organosilica hybrid nanomaterials with a high organic content: syntheses and applications of silsesquioxanes. Nanoscale, 2016, 8, 19945-19972.	5.6	136
9	Twoâ€Photon Excitation of Porphyrinâ€Functionalized Porous Silicon Nanoparticles for Photodynamic Therapy. Advanced Materials, 2014, 26, 7643-7648.	21.0	131
10	Antibodyâ€Functionalized Porous Silicon Nanoparticles for Vectorization of Hydrophobic Drugs. Advanced Healthcare Materials, 2013, 2, 718-727.	7.6	113
11	Twoâ€Photonâ€Triggered Drug Delivery via Fluorescent Nanovalves. Small, 2014, 10, 1752-1755.	10.0	106
12	Silicalites and Mesoporous Silica Nanoparticles for photodynamic therapy. International Journal of Pharmaceutics, 2010, 402, 221-230.	5.2	88
13	Porous Silicon Nanodiscs for Targeted Drug Delivery. Advanced Functional Materials, 2015, 25, 1137-1145.	14.9	82
14	Oneâ€₽ot Construction of Multipodal Hybrid Periodic Mesoporous Organosilica Nanoparticles with Crystal‣ike Architectures. Advanced Materials, 2015, 27, 145-149.	21.0	81
15	Mixed Periodic Mesoporous Organosilica Nanoparticles and Core–Shell Systems, Application to in Vitro Two-Photon Imaging, Therapy, and Drug Delivery. Chemistry of Materials, 2014, 26, 7214-7220.	6.7	77
16	Multifunctional Gold-Mesoporous Silica Nanocomposites for Enhanced Two-Photon Imaging and Therapy of Cancer Cells. Frontiers in Molecular Biosciences, 2016, 3, 1.	3.5	68
17	Anionic porphyrin-grafted porous silicon nanoparticles for photodynamic therapy. Chemical Communications, 2013, 49, 4202.	4.1	65
18	Magnetic nanoarchitectures for cancer sensing, imaging and therapy. Journal of Materials Chemistry B, 2019, 7, 9-23.	5.8	64

JEAN-OLIVIER DURAND

#	Article	IF	CITATIONS
19	Enhanced Two-Photon Fluorescence Imaging and Therapy of Cancer Cells via Gold@Bridged Silsesquioxane Nanoparticles. Small, 2015, 11, 295-299.	10.0	59
20	Synthesis of disulfide-based biodegradable bridged silsesquioxane nanoparticles for two-photon imaging and therapy of cancer cells. Chemical Communications, 2015, 51, 12324-12327.	4.1	58
21	Ruthenium(<scp>ii</scp>) complex-photosensitized multifunctionalized porous silicon nanoparticles for two-photon near-infrared light responsive imaging and photodynamic cancer therapy. Journal of Materials Chemistry B, 2016, 4, 1337-1342.	5.8	57
22	Mannoseâ€6â€Phosphate Receptor: A Target for Theranostics of Prostate Cancer. Angewandte Chemie - International Edition, 2015, 54, 5952-5956.	13.8	56
23	Porphyrin-functionalized mesoporous organosilica nanoparticles for two-photon imaging of cancer cells and drug delivery. Journal of Materials Chemistry B, 2015, 3, 3681-3684.	5.8	55
24	Targeted Treatment of Cancer with Nanotherapeutics Based on Mesoporous Silica Nanoparticles. ChemPlusChem, 2015, 80, 26-36.	2.8	53
25	Synthesis and Characterization of Fluorescently Doped Mesoporous Nanoparticles for Two-Photon Excitation. Chemistry of Materials, 2008, 20, 2174-2183.	6.7	50
26	Porous Porphyrinâ€Based Organosilica Nanoparticles for NIR Twoâ€Photon Photodynamic Therapy and Gene Delivery in Zebrafish. Advanced Functional Materials, 2018, 28, 1800235.	14.9	50
27	Disulfide-gated mesoporous silica nanoparticles designed for two-photon-triggered drug release and imaging. Journal of Materials Chemistry B, 2015, 3, 6456-6461.	5.8	49
28	Nanodiamond–PMO for two-photon PDT and drug delivery. Journal of Materials Chemistry B, 2016, 4, 5803-5808.	5.8	49
29	Mesoporous silica nanoparticles in recent photodynamic therapy applications. Photochemical and Photobiological Sciences, 2018, 17, 1651-1674.	2.9	47
30	Facile route to functionalized mesoporous silica nanoparticles by click chemistry. Journal of Materials Chemistry, 2011, 21, 13476.	6.7	46
31	Folic Acid-Targeted Mesoporous Silica Nanoparticles for Two-Photon Fluorescence. Journal of Biomedical Nanotechnology, 2010, 6, 176-180.	1.1	44
32	Photo-redox activated drug delivery systems operating under two photon excitation in the near-IR. Nanoscale, 2014, 6, 4652-4658.	5.6	43
33	Murine and Non-Human Primate Dendritic Cell Targeting Nanoparticles for <i>in Vivo</i> Generation of Regulatory T-Cells. ACS Nano, 2018, 12, 6637-6647.	14.6	43
34	Fluorescent periodic mesoporous organosilica nanoparticles dual-functionalized via click chemistry for two-photon photodynamic therapy in cells. Journal of Materials Chemistry B, 2016, 4, 5567-5574.	5.8	37
35	Twoâ€Photonâ€Excited Silica and Organosilica Nanoparticles for Spatiotemporal Cancer Treatment. Advanced Healthcare Materials, 2018, 7, e1701248.	7.6	36
36	Mesoporous silicon nanoparticles for targeted two-photon theranostics of prostate cancer. Journal of Materials Chemistry B, 2016, 4, 3639-3642.	5.8	35

JEAN-OLIVIER DURAND

#	Article	IF	CITATIONS
37	Manipulating human dendritic cell phenotype and function with targeted porous silicon nanoparticles. Biomaterials, 2018, 155, 92-102.	11.4	34
38	Porphyrin- or phthalocyanine-bridged silsesquioxane nanoparticles for two-photon photodynamic therapy or photoacoustic imaging. Nanoscale, 2017, 9, 16622-16626.	5.6	33
39	Nanodiamonds for bioapplications, recent developments. Journal of Materials Chemistry B, 2020, 8, 10878-10896.	5.8	33
40	Dualâ€Action Cancer Therapy with Targeted Porous Silicon Nanovectors. Small, 2017, 13, 1701201.	10.0	31
41	Gemcitabine Delivery and Photodynamic Therapy in Cancer Cells via Porphyrinâ€Ethyleneâ€Based Periodic Mesoporous Organosilica Nanoparticles. ChemNanoMat, 2018, 4, 46-51.	2.8	31
42	Mesoporous silica adsorbents modified with amino polycarboxylate ligands – functional characteristics, health and environmental effects. Journal of Hazardous Materials, 2021, 406, 124698.	12.4	31
43	Large Pore Mesoporous Silica and Organosilica Nanoparticles for Pepstatin A Delivery in Breast Cancer Cells. Molecules, 2019, 24, 332.	3.8	24
44	Efficient Photodynamic Therapy of Prostate Cancer Cells through an Improved Targeting of the Cation-Independent Mannose 6-Phosphate Receptor. International Journal of Molecular Sciences, 2019, 20, 2809.	4.1	21
45	Periodic Mesoporous Ionosilica Nanoparticles for Green Light Photodynamic Therapy and Photochemical Internalization of siRNA. ACS Applied Materials & Interfaces, 2021, 13, 29325-29339.	8.0	21
46	Influence of the synthetic method on the properties of two-photon-sensitive mesoporous silica nanoparticles. Journal of Materials Chemistry B, 2015, 3, 5182-5188.	5.8	20
47	Biocompatible Periodic Mesoporous Ionosilica Nanoparticles with Ammonium Walls: Application to Drug Delivery. ACS Applied Materials & Interfaces, 2017, 9, 32018-32025.	8.0	20
48	Phthalocyanine-based mesoporous organosilica nanoparticles: NIR photodynamic efficiency and siRNA photochemical internalization. Chemical Communications, 2019, 55, 11619-11622.	4.1	19
49	Persistent luminescence materials for deep photodynamic therapy. Nanophotonics, 2021, 10, 2999-3029.	6.0	19
50	Synthesis and Characterization of Core-Shell Magnetic Mesoporous Silica and Organosilica Nanostructures. MRS Advances, 2017, 2, 1037-1045.	0.9	18
51	Small sized mesoporous silica nanoparticles functionalized with mannose for retinoblastoma cell imaging. RSC Advances, 2014, 4, 37171.	3.6	15
52	Amino-acid functionalized porous silicon nanoparticles for the delivery of pDNA. RSC Advances, 2019, 9, 31895-31899.	3.6	14
53	Organosilica Nanoparticles for Gemcitabine Monophosphate Delivery in Cancer Cells. ChemNanoMat, 2019, 5, 888-896.	2.8	12
54	The mannose 6-phosphate receptor targeted with porphyrin-based periodic mesoporous organosilica nanoparticles for rhabdomyosarcoma theranostics. Biomaterials Science, 2020, 8, 3678-3684.	5.4	10

JEAN-OLIVIER DURAND

#	Article	IF	CITATIONS
55	Periodic Mesoporous Organosilica Nanoparticles with BOC Group, towards HIFU Responsive Agents. Molecules, 2020, 25, 974.	3.8	10
56	Polythiophenes with Cationic Phosphonium Groups as Vectors for Imaging, siRNA Delivery, and Photodynamic Therapy. Nanomaterials, 2020, 10, 1432.	4.1	9
57	Nanoparticles for Photodynamic Therapy Applications. Fundamental Biomedical Technologies, 2011, , 511-565.	0.2	8
58	Degradable gold core–mesoporous organosilica shell nanoparticles for two-photon imaging and gemcitabine monophosphate delivery. Molecular Systems Design and Engineering, 2017, 2, 380-383.	3.4	8
59	Stealth Biocompatible Si-Based Nanoparticles for Biomedical Applications. Nanomaterials, 2017, 7, 288.	4.1	7
60	Synthesis of Cyclenâ€Functionalized Ethenyleneâ€Based Periodic Mesoporous Organosilica Nanoparticles and Metalâ€lon Adsorption Studies. ChemNanoMat, 2020, 6, 1625-1634.	2.8	7
61	Porphyrinâ€based bridged silsesquioxane nanoparticles for targeted twoâ€photon photodynamic therapy of zebrafish xenografted with human tumor. Cancer Reports, 2019, 2, e1186.	1.4	6
62	Mesoporous Silica-Based Nanoparticles for Light-Actuated Biomedical Applications via Near-Infrared Two-Photon Absorption. The Enzymes, 2018, 43, 67-99.	1.7	5
63	Preparation and Characterization of Novel Mixed Periodic Mesoporous Organosilica Nanoparticles. Materials, 2020, 13, 1569.	2.9	5
64	Synthesis of triethoxysilylated cyclen derivatives, grafting on magnetic mesoporous silica nanoparticles and application to metal ion adsorption. RSC Advances, 2021, 11, 10777-10784.	3.6	5
65	Periodic Mesoporous Organosilica Nanoparticles for CO2 Adsorption at Standard Temperature and Pressure. Molecules, 2022, 27, 4245.	3.8	4
66	Degradable Hollow Organosilica Nanoparticles for Antibacterial Activity. ACS Omega, 2019, 4, 1479-1486.	3.5	3
67	Encapsulation of Upconversion Nanoparticles in Periodic Mesoporous Organosilicas. Molecules, 2019, 24, 4054.	3.8	3
68	Controlled synthesis and osmotic properties of ionosilica nanoparticles. Microporous and Mesoporous Materials, 2021, 310, 110644.	4.4	3
69	Quaternary Ammonium-Based Ionosilica Hydrogels as Draw Solutes in Forward Osmosis. Molecules, 2020, 25, 5987.	3.8	2