
Bob Goldstein

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/938653/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Production of reactive oxygen species and involvement of bioprotectants during anhydrobiosis in the tardigrade Paramacrobiotus spatialis. Scientific Reports, 2022, 12, 1938.	1.6	23
2	Preface. Current Topics in Developmental Biology, 2022, 147, xvii-xviii.	1.0	0
3	Tardigrades and their emergence as model organisms. Current Topics in Developmental Biology, 2022, 147, 173-198.	1.0	8
4	An expanded auxin-inducible degron toolkit for <i>Caenorhabditis elegans</i> . Genetics, 2021, 217, .	1.2	88
5	A guide to setting up and managing a lab at a research-intensive institution. BMC Proceedings, 2021, 15, 8.	1.8	9
6	LEA motifs promote desiccation tolerance in vivo. BMC Biology, 2021, 19, 263.	1.7	17
7	Mechanisms of Desiccation Tolerance: Themes and Variations in Brine Shrimp, Roundworms, and Tardigrades. Frontiers in Physiology, 2020, 11, 592016.	1.3	58
8	<i>Caenorhabditis elegans</i> Gastrulation: A Model for Understanding How Cells Polarize, Change Shape, and Journey Toward the Center of an Embryo. Genetics, 2020, 214, 265-277.	1.2	23
9	Differential Expression Gene Explorer (DrEdGE): a tool for generating interactive online visualizations of gene expression datasets. Bioinformatics, 2020, 36, 2581-2583.	1.8	7
10	Ectopic Germ Cells Can Induce Niche-like Enwrapment by Neighboring Body Wall Muscle. Current Biology, 2019, 29, 823-833.e5.	1.8	16
11	Lightâ€Dependent Cytoplasmic Recruitment Enhances the Dynamic Range of a Nuclear Import Photoswitch. ChemBioChem, 2018, 19, 1319-1325.	1.3	15
12	Gelation and Vitrification of Tardigrade IDPs. Biophysical Journal, 2018, 114, 560a-561a.	0.2	1
13	A CRISPR Tagging-Based Screen Reveals Localized Players in Wnt-Directed Asymmetric Cell Division. Genetics, 2018, 208, 1147-1164.	1.2	75
14	On Francis Crick, the genetic code, and a clever kid. Current Biology, 2018, 28, R305.	1.8	1
15	LITE microscopy: Tilted light-sheet excitation of model organisms offers high resolution and low photobleaching. Journal of Cell Biology, 2018, 217, 1869-1882.	2.3	64
16	The Emergence of the Tardigrade <i>Hypsibius exemplaris</i> as a Model System. Cold Spring Harbor Protocols, 2018, 2018, pdb.emo102301.	0.2	20
17	Live Imaging of Tardigrade Embryonic Development by Differential Interference Contrast Microscopy. Cold Spring Harbor Protocols, 2018, 2018, pdb.prot102335.	0.2	5
18	Fluorescent Cell Staining Methods for Living <i>Hypsibius exemplaris</i> Embryos. Cold Spring Harbor Protocols, 2018, 2018, pdb.prot106021.	0.2	7

#	Article	lF	CITATIONS
19	Analyses of nervous system patterning genes in the tardigrade Hypsibius exemplaris illuminate the evolution of panarthropod brains. EvoDevo, 2018, 9, 19.	1.3	16
20	Predicting Division Planes of Three-Dimensional Cells by Soap-Film Minimization. Plant Cell, 2018, 30, 2255-2266.	3.1	36
21	SapTrap assembly of repair templates for Cas9-triggered homologous recombination with a self-excising cassette. MicroPublication Biology, 2018, 2018, .	0.1	21
22	Optogenetic dissection of mitotic spindle positioning in vivo. ELife, 2018, 7, .	2.8	69
23	Direct visualization of a native Wnt in vivo reveals that a long-range Wnt gradient forms by extracellular dispersal. ELife, 2018, 7, .	2.8	71
24	Tardigrade Disordered Proteins Mediate Desiccation Tolerance. Biophysical Journal, 2017, 112, 480a.	0.2	1
25	Tardigrade Intrinsically Disordered Proteins as Potential Excipients for Biologics. Biophysical Journal, 2017, 112, 512a.	0.2	Ο
26	Tardigrades Use Intrinsically Disordered Proteins to Survive Desiccation. Molecular Cell, 2017, 65, 975-984.e5.	4.5	302
27	Cell polarity and morphogenesis: new technologies and new findings. Molecular Biology of the Cell, 2017, 28, 699-700.	0.9	Ο
28	A Hypothesis for the Composition of the Tardigrade Brain and its Implications for Panarthropod Brain Evolution. Integrative and Comparative Biology, 2017, 57, 546-559.	0.9	26
29	A Single-Cell Biochemistry Approach Reveals PAR Complex Dynamics during Cell Polarization. Developmental Cell, 2017, 42, 416-434.e11.	3.1	139
30	CENP-A and topoisomerase-II antagonistically affect chromosome length. Journal of Cell Biology, 2017, 216, 2645-2655.	2.3	27
31	Cellular mechanisms of morphogenesis. Seminars in Cell and Developmental Biology, 2017, 67, 101-102.	2.3	1
32	Cell Invasion InÂVivo via Rapid Exocytosis of a Transient Lysosome-Derived Membrane Domain. Developmental Cell, 2017, 43, 403-417.e10.	3.1	67
33	Identification of regulators of germ stem cell enwrapment by its niche in C. elegans. Developmental Biology, 2017, 429, 271-284.	0.9	23
34	Non-model model organisms. BMC Biology, 2017, 15, 55.	1.7	164
35	Segmentation in Tardigrada and diversification of segmental patterns in Panarthropoda. Arthropod Structure and Development, 2017, 46, 328-340.	0.8	32
36	Comparative assessment of fluorescent proteins for in vivo imaging in an animal model system. Molecular Biology of the Cell, 2016, 27, 3385-3394.	0.9	108

#	Article	IF	CITATIONS
37	Remodelling germ cells by intercellular cannibalism. Nature Cell Biology, 2016, 18, 1267-1268.	4.6	Ο
38	Biophysics of Tardigrade Survival. Biophysical Journal, 2016, 110, 401a.	0.2	1
39	Reply to Bemm et al. and Arakawa: Identifying foreign genes in independent Hypsibius dujardini genome assemblies. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E3058-E3061.	3.3	11
40	Sydney Brenner on the Genetics of <i>Caenorhabditis elegans</i> . Genetics, 2016, 204, 1-2.	1.2	21
41	MRCK-1 Drives Apical Constriction in C.Âelegans by Linking Developmental Patterning to Force Generation. Current Biology, 2016, 26, 2079-2089.	1.8	96
42	A Transcriptional Lineage of the Early C.Âelegans Embryo. Developmental Cell, 2016, 38, 430-444.	3.1	119
43	The Future of Cell Biology: Emerging Model Organisms. Trends in Cell Biology, 2016, 26, 818-824.	3.6	93
44	The Compact Body Plan of Tardigrades Evolved by the Loss of a Large Body Region. Current Biology, 2016, 26, 224-229.	1.8	91
45	Identifying Regulators of Morphogenesis Common to Vertebrate Neural Tube Closure and <i>Caenorhabditis elegans</i> Gastrulation. Genetics, 2016, 202, 123-139.	1.2	22
46	CRISPR-Based Methods for <i>Caenorhabditis elegans</i> Genome Engineering. Genetics, 2016, 202, 885-901.	1.2	258
47	Ancient and Novel Small RNA Pathways Compensate for the Loss of piRNAs in Multiple Independent Nematode Lineages. PLoS Biology, 2015, 13, e1002061.	2.6	118
48	Asymmetric Transcript Discovery by RNA-seq in C. elegans Blastomeres Identifies neg-1, a Gene Important for Anterior Morphogenesis. PLoS Genetics, 2015, 11, e1005117.	1.5	20
49	Crescerin uses a TOG domain array to regulate microtubules in the primary cilium. Molecular Biology of the Cell, 2015, 26, 4248-4264.	0.9	52
50	Moving Inward: Establishing the Mammalian Inner Cell Mass. Developmental Cell, 2015, 34, 385-386.	3.1	3
51	Streamlined Genome Engineering with a Self-Excising Drug Selection Cassette. Genetics, 2015, 200, 1035-1049.	1.2	557
52	Evidence for extensive horizontal gene transfer from the draft genome of a tardigrade. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 15976-15981.	3.3	145
53	Control of Protein Activity and Cell Fate Specification via Light-Mediated Nuclear Translocation. PLoS ONE, 2015, 10, e0128443.	1.1	95
54	Apical constriction: themes and variations on a cellular mechanism driving morphogenesis. Development (Cambridge), 2014, 141, 1987-1998.	1.2	402

#	Article	IF	CITATIONS
55	Engineering the Caenorhabditis elegans genome using Cas9-triggered homologous recombination. Nature Methods, 2013, 10, 1028-1034.	9.0	905
56	RNA interference can be used to disrupt gene function in tardigrades. Development Genes and Evolution, 2013, 223, 171-181.	0.4	54
57	Redundant Canonical and Noncanonical <i>Caenorhabditis elegans</i> p21-Activated Kinase Signaling Governs Distal Tip Cell Migrations. G3: Genes, Genomes, Genetics, 2013, 3, 181-195.	0.8	16
58	Bob Goldstein: Cell biology by way of development. Journal of Cell Biology, 2013, 202, 400-401.	2.3	0
59	An MBoC Favorite: Receptor-mediated endocytosis in the Caenorhabditis elegans oocyte. Molecular Biology of the Cell, 2012, 23, 2235-2235.	0.9	Ο
60	Culture and Manipulation of Embryonic Cells. Methods in Cell Biology, 2012, 107, 151-175.	0.5	38
61	RhoA activation during polarization and cytokinesis of the early <i>Caenorhabditis elegans</i> embryo is differentially dependent on NOP-1 and CYK-4. Molecular Biology of the Cell, 2012, 23, 4020-4031.	0.9	167
62	Noninvasive Imaging beyond the Diffraction Limit of 3D Dynamics in Thickly Fluorescent Specimens. Cell, 2012, 151, 1370-1385.	13.5	301
63	Neural Tube Closure: The Curious Case of Shrinking Junctions. Current Biology, 2012, 22, R574-R576.	1.8	7
64	Triggering a Cell Shape Change by Exploiting Preexisting Actomyosin Contractions. Science, 2012, 335, 1232-1235.	6.0	251
65	Internalization of multiple cells during C. elegans gastrulation depends on common cytoskeletal mechanisms but different cell polarity and cell fate regulators. Developmental Biology, 2011, 350, 1-12.	0.9	48
66	How signaling between cells can orient a mitotic spindle. Seminars in Cell and Developmental Biology, 2011, 22, 842-849.	2.3	25
67	Dynamic localization of <i>C. elegans</i> TPR-GoLoco proteins mediates mitotic spindle orientation by extrinsic signaling. Development (Cambridge), 2011, 138, 4411-4422.	1.2	23
68	Overcoming Redundancy: An RNAi Enhancer Screen for Morphogenesis Genes in <i>Caenorhabditis elegans</i> . Genetics, 2011, 188, 549-564.	1.2	30
69	Dynamic localization of C. elegans TPR-GoLoco proteins mediates mitotic spindle orientation by extrinsic signaling. Journal of Cell Science, 2011, 124, e1-e1.	1.2	0
70	Asymmetric Cell Division: A New Way to Divide Unequally. Current Biology, 2010, 20, R1029-R1031.	1.8	4
71	Extracellular control of PAR protein localization during asymmetric cell division in the <i>C. elegans</i> embryo. Development (Cambridge), 2010, 137, 3337-3345.	1.2	29
72	Apical constriction: A cell shape change that can drive morphogenesis. Developmental Biology, 2010, 341, 5-19.	0.9	408

#	Article	IF	CITATIONS
73	Roles for Actin Dynamics in Cell Movements During Development. , 2010, , 187-209.		1
74	In vivo roles for Arp2/3 in cortical actin organization during <i>C. elegans</i> gastrulation. Journal of Cell Science, 2009, 122, 3983-3993.	1.2	32
75	A Cell Cycle Timer for Asymmetric Spindle Positioning. PLoS Biology, 2009, 7, e1000088.	2.6	43
76	Wnt Signaling During Caenorhabditis elegans Embryonic Development. Methods in Molecular Biology, 2008, 469, 103-111.	0.4	5
77	The tardigrade Hypsibius dujardini, a new model for studying the evolution of development. Developmental Biology, 2007, 312, 545-559.	0.9	119
78	The PAR Proteins: Fundamental Players in Animal Cell Polarization. Developmental Cell, 2007, 13, 609-622.	3.1	702
79	Segmental expression of Pax3/7 and Engrailed homologs in tardigrade development. Development Genes and Evolution, 2007, 217, 421-433.	0.4	101
80	Actin-based forces driving embryonic morphogenesis in Caenorhabditis elegans. Current Opinion in Genetics and Development, 2006, 16, 392-398.	1.5	22
81	Wnt Signals Can Function as Positional Cues in Establishing Cell Polarity. Developmental Cell, 2006, 10, 391-396.	3.1	155
82	Symmetry Breaking in C. elegans: Another Gift from the Sperm. Developmental Cell, 2006, 11, 273-274.	3.1	10
83	Asymmetric spindle positioning. Current Opinion in Cell Biology, 2006, 18, 79-85.	2.6	49
84	Wnt/Frizzled Signaling Controls C. elegans Gastrulation by Activating Actomyosin Contractility. Current Biology, 2006, 16, 1986-1997.	1.8	121
85	Asymmetric Division: A Kinesin for Spindle Positioning. Current Biology, 2005, 15, R591-R593.	1.8	1
86	Genes required for RNA interference. , 2005, , 55-68.		1
87	RNA Interference in <i>Caenorhabditis elegans</i> . , 2005, 309, 029-038.		7
88	Gastrulation in C. elegans. WormBook, 2005, , 1-13.	5.3	33
89	C. elegans PAR Proteins Function by Mobilizing and Stabilizing Asymmetrically Localized Protein Complexes. Current Biology, 2004, 14, 851-862.	1.8	166
90	The forces that position a mitotic spindle asymmetrically are tethered until after the time of spindle assembly. Journal of Cell Biology, 2004, 167, 245-256.	2.3	97

#	Article	IF	CITATIONS
91	PAR Proteins Regulate Microtubule Dynamics at the Cell Cortex in C. elegans. Current Biology, 2003, 13, 707-714.	1.8	87
92	Asymmetric Division: AGS Proteins Position the Spindle. Current Biology, 2003, 13, R879-R880.	1.8	3
93	Mechanisms of cell positioning during C. elegansgastrulation. Development (Cambridge), 2003, 130, 307-320.	1.2	94
94	Using RNA interference to identify genes required for RNA interference. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 4191-4196.	3.3	118
95	Embryonic Development: A New SPN on Cell Fate Specification. Current Biology, 2002, 12, R396-R398.	1.8	7
96	Tardigrades. Current Biology, 2002, 12, R475.	1.8	24
97	Dorsal and Snail homologs in leech development. Development Genes and Evolution, 2001, 211, 329-337.	0.4	21
98	On the evolution of early development in the Nematoda. Philosophical Transactions of the Royal Society B: Biological Sciences, 2001, 356, 1521-1531.	1.8	60
99	When cells tell their neighbors which direction to divide. , 2000, 218, 23-29.		24
100	Embryonic polarity: A role for microtubules. Current Biology, 2000, 10, R820-R822.	1.8	18
101	Embryonic axis specification in nematodes: evolution of the first step in development. Current Biology, 1998, 8, 157-160.	1.8	66
102	Axis specification in animal development. BioEssays, 1997, 19, 105-116.	1.2	92
103	Cell polarity in early <i>C. elegans</i> development. Development (Cambridge), 1993, 119, 279-287.	1.2	18
104	Induction of gut in Caenorhabditis elegans embryos. Nature, 1992, 357, 255-257.	13.7	207