Elena A Levashina

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9386467/publications.pdf

Version: 2024-02-01

91828 71061 7,323 76 41 69 citations h-index g-index papers 87 87 87 6316 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Immunity-Related Genes and Gene Families inAnopheles gambiae. Science, 2002, 298, 159-165.	6.0	845
2	Complement-Like Protein TEP1 Is a Determinant of Vectorial Capacity in the Malaria Vector Anopheles gambiae. Cell, 2004, 116, 661-670.	13.5	566
3	Evolutionary Dynamics of Immune-Related Genes and Pathways in Disease-Vector Mosquitoes. Science, 2007, 316, 1738-1743.	6.0	550
4	Conserved Role of a Complement-like Protein in Phagocytosis Revealed by dsRNA Knockout in Cultured Cells of the Mosquito, Anopheles gambiae. Cell, 2001, 104, 709-718.	13.5	472
5	Midgut Microbiota of the Malaria Mosquito Vector Anopheles gambiae and Interactions with Plasmodium falciparum Infection. PLoS Pathogens, 2012, 8, e1002742.	2.1	427
6	Reverse genetics in the mosquito Anopheles gambiae: targeted disruption of the Defensin gene. EMBO Reports, 2002, 3, 852-856.	2.0	331
7	Two Mosquito LRR Proteins Function as Complement Control Factors in the TEP1-Mediated Killing of Plasmodium. Cell Host and Microbe, 2009, 5, 273-284.	5.1	212
8	Boosting NF-κB-Dependent Basal Immunity ofÂAnopheles gambiae Aborts Development ofÂPlasmodium berghei. Immunity, 2006, 25, 677-685.	6.6	210
9	Metchnikowin, a Novel Immune-Inducible Proline-Rich Peptide from Drosophila with Antibacterial and Antifungal Properties. FEBS Journal, 1995, 233, 694-700.	0.2	191
10	Thioester-containing proteins and insect immunity. Molecular Immunology, 2004, 40, 903-908.	1.0	188
11	The Major Yolk Protein Vitellogenin Interferes with the Anti-Plasmodium Response in the Malaria Mosquito Anopheles gambiae. PLoS Biology, 2010, 8, e1000434.	2.6	144
12	Evidence of natural Wolbachia infections in field populations of Anopheles gambiae. Nature Communications, 2014, 5, 3985.	5.8	142
13	Clonal selection drives protective memory B cell responses in controlled human malaria infection. Science Immunology, 2018, 3, .	5.6	132
14	Natural Parasite Exposure Induces Protective Human Anti-Malarial Antibodies. Immunity, 2017, 47, 1197-1209.e10.	6.6	129
15	In Vivo Identification of Novel Regulators and Conserved Pathways of Phagocytosis in A. gambiae. Immunity, 2005, 23, 65-73.	6.6	126
16	Antimalarial Responses in Anopheles gambiae: From a Complement-like Protein to a Complement-like Pathway. Cell Host and Microbe, 2008, 3, 364-374.	5.1	125
17	Two distinct pathways can control expression of the gene encoding the Drosophila antimicrobial peptide metchnikowin. Journal of Molecular Biology, 1998, 278, 515-527.	2.0	120
18	Innate immune defense against malaria infection in the mosquito. Current Opinion in Immunology, 2001, 13, 79-88.	2.4	116

#	Article	IF	CITATIONS
19	Molecular and cellular components of the mating machinery in <i>Anopheles gambiae</i> females. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 19390-19395.	3.3	107
20	Dissecting the Genetic Basis of Resistance to Malaria Parasites in <i>Anopheles gambiae</i> . Science, 2009, 326, 147-150.	6.0	106
21	Tools for <i>Anopheles gambiae</i> Transgenesis. G3: Genes, Genomes, Genetics, 2015, 5, 1151-1163.	0.8	95
22	The reproductive tracts of two malaria vectors are populated by a core microbiome and by genderand swarm-enriched microbial biomarkers. Scientific Reports, 2016, 6, 24207.	1.6	93
23	Antihomotypic affinity maturation improves human B cell responses against a repetitive epitope. Science, 2018, 360, 1358-1362.	6.0	89
24	Structural basis for conserved complement factor-like function in the antimalarial protein TEP1. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 11615-11620.	3.3	87
25	Rare PfCSP C-terminal antibodies induced by live sporozoite vaccination are ineffective against malaria infection. Journal of Experimental Medicine, 2018, 215, 63-75.	4.2	79
26	Targeted Mutagenesis in the Malaria Mosquito Using TALE Nucleases. PLoS ONE, 2013, 8, e74511.	1.1	78
27	MalariaPlasmodium agent induces alteration in the head proteome of theirAnopheles mosquito host. Proteomics, 2007, 7, 1908-1915.	1.3	75
28	Bacterial alpha2-macroglobulins: colonization factors acquired by horizontal gene transfer from the metazoan genome?. Genome Biology, 2004, 5, R38.	13.9	74
29	The <i>necrotic</i> Gene in Drosophila Corresponds to One of a Cluster of Three Serpin Transcripts Mapping at 43A1.2. Genetics, 2000, 156, 1117-1127.	1.2	66
30	Evolution of protective human antibodies against Plasmodium falciparum circumsporozoite protein repeat motifs. Nature Medicine, 2020, 26, 1135-1145.	15.2	64
31	Silencing of Toll pathway components by direct injection of double-stranded RNA into Drosophila adult flies. Nucleic Acids Research, 2003, 31, 6619-6623.	6.5	63
32	A heterodimeric complex of the LRR proteins LRIM1 and APL1C regulates complement-like immunity in <i>Anopheles gambiae</i> . Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 16817-16822.	3.3	58
33	Non-competitive resource exploitation within mosquito shapes within-host malaria infectivity and virulence. Nature Communications, 2018, 9, 3474.	5.8	58
34	Unbiased classification of mosquito blood cells by single-cell genomics and high-content imaging. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E7568-E7577.	3.3	57
35	High-throughput sorting of mosquito larvae for laboratory studies and for future vector control interventions. Malaria Journal, 2012, 11, 302.	0.8	56
36	Immune responses in Anopheles gambiae. Insect Biochemistry and Molecular Biology, 2004, 34, 673-678.	1.2	55

#	Article	IF	CITATIONS
37	Functional Genomics of Tick Thioester-Containing Proteins Reveal the Ancient Origin of the Complement System. Journal of Innate Immunity, 2011, 3, 623-630.	1.8	55
38	Phagocytosis in mosquito immune responses. Immunological Reviews, 2007, 219, 8-16.	2.8	53
39	A New Role of the Mosquito Complement-like Cascade in Male Fertility in Anopheles gambiae. PLoS Biology, 2015, 13, e1002255.	2.6	53
40	Immune responses and parasite transmission in blood-feeding insects. Trends in Parasitology, 2004, 20, 433-439.	1.5	51
41	Transcriptome-wide analysis of microRNA expression in the malaria mosquito Anopheles gambiae. BMC Genomics, 2014, 15, 557.	1.2	49
42	Mosquito immune responses against malaria parasites. Current Opinion in Immunology, 2004, 16, 16-20.	2.4	48
43	Fz2 and Cdc42 Mediate Melanization and Actin Polymerization but Are Dispensable for Plasmodium Killing in the Mosquito Midgut. PLoS Pathogens, 2006, 2, e133.	2.1	46
44	A Novel Tool for the Generation of Conditional Knockouts To Study Gene Function across the Plasmodium falciparum Life Cycle. MBio, 2019, 10, .	1.8	45
45	Genetic clonality of Plasmodium falciparum affects the outcome of infection in Anopheles gambiae. International Journal for Parasitology, 2012, 42, 589-595.	1.3	44
46	Comparative Proteomics and Functional Analysis Reveal a Role of Plasmodium falciparum Osmiophilic Bodies in Malaria Parasite Transmission. Molecular and Cellular Proteomics, 2016, 15, 3243-3255.	2.5	40
47	Variation in susceptibility of African Plasmodium falciparum malaria parasites to TEP1 mediated killing in Anopheles gambiae mosquitoes. Scientific Reports, 2016, 6, 20440.	1.6	34
48	Vector Immunity and Evolutionary Ecology: The Harmonious Dissonance. Trends in Immunology, 2018, 39, 862-873.	2.9	33
49	Intracellular immune responses of dipteran insects. Immunological Reviews, 2011, 240, 129-140.	2.8	31
50	Metabolic balancing by miR-276 shapes the mosquito reproductive cycle and Plasmodium falciparum development. Nature Communications, 2019, 10, 5634.	5.8	31
51	Anopheles gambiae TEP1 forms a complex with the coiled-coil domain of LRIM1/APL1C following a conformational change in the thioester domain. PLoS ONE, 2019, 14, e0218203.	1.1	24
52	AP-1/Fos-TGase2 Axis Mediates Wounding-induced Plasmodium falciparum Killing in Anopheles gambiae. Journal of Biological Chemistry, 2013, 288, 16145-16154.	1.6	22
53	Critical Steps of Plasmodium falciparum Ookinete Maturation. Frontiers in Microbiology, 2020, 11, 269.	1.5	22
54	MicroRNA Tissue Atlas of the Malaria Mosquito <i>Anopheles gambiae</i> . G3: Genes, Genomes, Genetics, 2018, 8, 185-193.	0.8	21

#	Article	IF	CITATIONS
55	A high-affinity antibody against the CSP N-terminal domain lacks $\langle i \rangle$ Plasmodium falciparum $\langle i \rangle$ inhibitory activity. Journal of Experimental Medicine, 2020, 217, .	4.2	21
56	Mosquito defenses against Plasmodium parasites. Current Opinion in Insect Science, 2014, 3, 30-36.	2.2	18
57	NF-κB-Like Signaling Pathway REL2 in Immune Defenses of the Malaria Vector Anopheles gambiae. Frontiers in Cellular and Infection Microbiology, 2017, 7, 258.	1.8	18
58	Mosquito microevolution drives Plasmodium falciparum dynamics. Nature Microbiology, 2019, 4, 941-947.	5.9	18
59	RNAi in the Malaria Vector, Anopheles gambiae. Methods in Molecular Biology, 2009, 555, 63-75.	0.4	17
60	Salivary Gland-Specific P. berghei Reporter Lines Enable Rapid Evaluation of Tissue-Specific Sporozoite Loads in Mosquitoes. PLoS ONE, 2012, 7, e36376.	1.1	15
61	Focusing on complement in the antiparasitic defense of mosquitoes. Trends in Parasitology, 2010, 26, 1-3.	1.5	13
62	Kinetics of Plasmodium midgut invasion in Anopheles mosquitoes. PLoS Pathogens, 2020, 16, e1008739.	2.1	12
63	The role of micro <scp>RNA</scp> s in <i>Anopheles</i> biologyâ€"an emerging research field. Parasite Immunology, 2017, 39, e12405.	0.7	11
64	Micromanaging Immunity in the Murine Host vs. the Mosquito Vector: Microbiota-Dependent Immune Responses to Intestinal Parasites. Frontiers in Cellular and Infection Microbiology, 2018, 8, 308.	1.8	10
65	Silencing of Genes and Alleles by RNAi in Anopheles gambiae. Methods in Molecular Biology, 2012, 923, 161-176.	0.4	8
66	Reverse Genetics Analysis of Antiparasitic Responses in the Malaria Vector, Anopheles gambiae. , 2008, 415, 365-377.		6
67	Insects Go on a STING Operation to Tackle Intracellular Invaders. Immunity, 2018, 49, 195-197.	6.6	4
68	Advancing vector biology research: a community survey for future directions, research applications and infrastructure requirements. Pathogens and Global Health, 2016, 110, 164-172.	1.0	3
69	Complement-Like System in the Mosquito Responses Against Malaria Parasites. , 2018, , 139-146.		2
70	Similarities between insect and plant host defences. Trends in Cell Biology, 1997, 7, 316.	3.6	0
71	Host-parasite interactions: the balance of trade. Current Opinion in Microbiology, 2008, 11, 338-339.	2.3	0
72	Lawrence's book review unfair to Hoffmann. Current Biology, 2012, 22, R482.	1.8	0

#	Article	IF	CITATIONS
73	Kinetics of Plasmodium midgut invasion in Anopheles mosquitoes. , 2020, 16, e1008739.		O
74	Kinetics of Plasmodium midgut invasion in Anopheles mosquitoes. , 2020, 16, e1008739.		0
75	Kinetics of Plasmodium midgut invasion in Anopheles mosquitoes. , 2020, 16, e1008739.		O
76	Kinetics of Plasmodium midgut invasion in Anopheles mosquitoes. , 2020, 16, e1008739.		0