Massimo Mattia Santoro

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9386281/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Oxidative pentose phosphate pathway controls vascular mural cell coverage by regulating extracellular matrix composition. Nature Metabolism, 2022, 4, 123-140.	5.1	10
2	UBIAD1 and CoQ10 protect melanoma cells from lipid peroxidation-mediated cell death. Redox Biology, 2022, 51, 102272.	3.9	12
3	Aspartate metabolism in endothelial cells activates the mTORC1 pathway to initiate translation during angiogenesis. Developmental Cell, 2022, 57, 1241-1256.e8.	3.1	11
4	Cancer-Induced Metabolic Rewiring of Tumor Endothelial Cells. Cancers, 2022, 14, 2735.	1.7	3
5	Efficient clofilium tosylate-mediated rescue of POLG-related disease phenotypes in zebrafish. Cell Death and Disease, 2021, 12, 100.	2.7	13
6	The origin and mechanisms of smooth muscle cell development in vertebrates. Development (Cambridge), 2021, 148, .	1.2	23
7	Time to fight: targeting the circadian clock molecular machinery in cancer therapy. Drug Discovery Today, 2021, 26, 1164-1184.	3.2	7
8	LPHN2 inhibits vascular permeability by differential control of endothelial cell adhesion. Journal of Cell Biology, 2021, 220, .	2.3	15
9	The Antioxidant Role of Non-mitochondrial CoQ10: Mystery Solved!. Cell Metabolism, 2020, 31, 13-15.	7.2	64
10	Adaptive redox homeostasis in cutaneous melanoma. Redox Biology, 2020, 37, 101753.	3.9	37
11	Advantages and Challenges of Cardiovascular and Lymphatic Studies in Zebrafish Research. Frontiers in Cell and Developmental Biology, 2019, 7, 89.	1.8	5
12	Role of amino acid metabolism in angiogenesis. Vascular Pharmacology, 2019, 112, 17-23.	1.0	19
13	New models to study vascular mural cell embryonic origin: implications in vascular diseases. Cardiovascular Research, 2018, 114, 481-491.	1.8	27
14	Fashioning blood vessels by ROS signalling and metabolism. Seminars in Cell and Developmental Biology, 2018, 80, 35-42.	2.3	21
15	Before the Pump. Arteriosclerosis, Thrombosis, and Vascular Biology, 2018, 38, 2763-2764.	1.1	2
16	Loss of pyruvate kinase M2 limits growth and triggers innate immune signaling in endothelial cells. Nature Communications, 2018, 9, 4077.	5.8	55
17	Compound heterozygous loss-of-function mutations in KIF20A are associated with a novel lethal congenital cardiomyopathy in two siblings. PLoS Genetics, 2018, 14, e1007138.	1.5	18
18	An exclusive cellular and molecular network governs intestinal smooth muscle cell differentiation in vertebrates. Development (Cambridge), 2017, 144, 464-478.	1.2	31

#	Article	IF	CITATIONS
19	Real-time quantification of subcellular H2O2 and glutathione redox potential in living cardiovascular tissues. Free Radical Biology and Medicine, 2017, 109, 189-200.	1.3	32
20	Data on metabolic-dependent antioxidant response in the cardiovascular tissues of living zebrafish under stress conditions. Data in Brief, 2017, 12, 427-432.	0.5	7
21	Cilia Control Vascular Mural Cell Recruitment in Vertebrates. Cell Reports, 2017, 18, 1033-1047.	2.9	60
22	"Decoding―Angiogenesis: New Facets Controlling Endothelial Cell Behavior. Frontiers in Physiology, 2016, 7, 306.	1.3	33
23	Blood flow controls bone vascular function and osteogenesis. Nature Communications, 2016, 7, 13601.	5.8	261
24	PPFIA1 drives active $\hat{I}\pm S\hat{I}^21$ integrin recycling and controls fibronectin fibrillogenesis and vascular morphogenesis. Nature Communications, 2016, 7, 13546.	5.8	72
25	Transgenic Zebrafish. Methods in Molecular Biology, 2016, 1464, 107-114.	0.4	11
26	The heme exporter Flvcr1 regulates expansion and differentiation of committed erythroid progenitors by controlling intracellular heme accumulation. Haematologica, 2015, 100, 720-729.	1.7	54
27	Vascular Mural Cells Promote Noradrenergic Differentiation of Embryonic Sympathetic Neurons. Cell Reports, 2015, 11, 1786-1796.	2.9	15
28	ROS signaling and redox biology in endothelial cells. Cellular and Molecular Life Sciences, 2015, 72, 3281-3303.	2.4	112
29	Rapid high performance liquid chromatography–high resolution mass spectrometry methodology for multiple prenol lipids analysis in zebrafish embryos. Journal of Chromatography A, 2015, 1412, 59-66.	1.8	15
30	The Dlx5 and Foxg1 transcription factors, linked via miRNA-9 and -200, are required for the development of the olfactory and GnRH system. Molecular and Cellular Neurosciences, 2015, 68, 103-119.	1.0	51
31	Antiangiogenic Cancer Drug Using the Zebrafish Model. Arteriosclerosis, Thrombosis, and Vascular Biology, 2014, 34, 1846-1853.	1.1	28
32	Zebrafish as a model to explore cell metabolism. Trends in Endocrinology and Metabolism, 2014, 25, 546-554.	3.1	40
33	Analysis of Oxidative Stress in Zebrafish Embryos. Journal of Visualized Experiments, 2014, , .	0.2	57
34	ZebraBeat: a flexible platform for the analysis of the cardiac rate in zebrafish embryos. Scientific Reports, 2014, 4, .	1.6	112
35	An α-Smooth Muscle Actin (acta2/αsma) Zebrafish Transgenic Line Marking Vascular Mural Cells and Visceral Smooth Muscle Cells. PLoS ONE, 2014, 9, e90590.	1.1	79
36	The admiR-able advances in cardiovascular biology through the zebrafish model system. Cellular and Molecular Life Sciences, 2013, 70, 2489-2503.	2.4	5

#	Article	IF	CITATIONS
37	Ubiad1 Is an Antioxidant Enzyme that Regulates eNOS Activity by CoQ10 Synthesis. Cell, 2013, 152, 504-518.	13.5	176
38	miRNAs in endothelial cell signaling: The endomiRNAs. Experimental Cell Research, 2013, 319, 1324-1330.	1.2	31
39	Knockdown of cathepsin D in zebrafish fertilized eggs determines congenital myopathy. Bioscience Reports, 2013, 33, e00034.	1.1	23
40	Tumor Angiogenesis: Fishing for Screening Models. , 2013, , 293-312.		1
41	13C-isotope-based protocol for prenyl lipid metabolic analysis in zebrafish embryos. Nature Protocols, 2013, 8, 2337-2347.	5.5	14
42	CARD-Mediated Autoinhibition of cIAP1's E3 Ligase Activity Suppresses Cell Proliferation and Migration. Molecular Cell, 2011, 42, 569-583.	4.5	89
43	"Fishing―for endothelial microRNA functions and dysfunction. Vascular Pharmacology, 2011, 55, 60-68.	1.0	10
44	Phylogeny informs ontogeny: a proposed common theme in the arterial pole of the vertebrate heart. Evolution & Development, 2010, 12, 552-567.	1.1	33
45	Characterization of vascular mural cells during zebrafish development. Mechanisms of Development, 2009, 126, 638-649.	1.7	111
46	IAPs contain an evolutionarily conserved ubiquitin-binding domain that regulates NF-κB as well as cell survival and oncogenesis. Nature Cell Biology, 2008, 10, 1309-1317.	4.6	228
47	miR-126 Regulates Angiogenic Signaling and Vascular Integrity. Developmental Cell, 2008, 15, 272-284.	3.1	1,489
48	Diacylglycerol Kinase-α Mediates Hepatocyte Growth Factor-induced Epithelial Cell Scatter by Regulating Rac Activation and Membrane Ruffling. Molecular Biology of the Cell, 2007, 18, 4859-4871.	0.9	33
49	A transgene-assisted genetic screen identifies essential regulators of vascular development in vertebrate embryos. Developmental Biology, 2007, 307, 29-42.	0.9	123
50	Birc2 (clap1) regulates endothelial cell integrity and blood vessel homeostasis. Nature Genetics, 2007, 39, 1397-1402.	9.4	131
51	Geldanamycins Trigger a Novel Ron Degradative Pathway, Hampering Oncogenic Signaling*. Journal of Biological Chemistry, 2006, 281, 21710-21719.	1.6	25
52	Cellular and molecular facets of keratinocyte reepithelization during wound healing. Experimental Cell Research, 2005, 304, 274-286.	1.2	329
53	The MSP Receptor Regulates α6β4 and α3β1 Integrins via 14-3-3 Proteins in Keratinocyte Migration. Developmental Cell, 2003, 5, 257-271.	3.1	193
54	Protein phosphatase 1 binds to phospho-Ser-1394 of the macrophage-stimulating protein receptor. Biochemical Journal, 2003, 376, 587-594.	1.7	10

#	Article	IF	CITATIONS
55	The Ron oncogenic activity induced by the MEN2B-like substitution overcomes the requirement for the multifunctional docking site. Oncogene, 2000, 19, 5208-5211.	2.6	17
56	Point mutations in the tyrosine kinase domain release the oncogenic and metastatic potential of the ron receptor. Oncogene, 1998, 17, 741-749.	2.6	88
57	YAP/TAZ–TEAD link angiogenesis to nutrients. Nature Metabolism, 0, , .	5.1	0