## Katarina Vorcakova

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/938627/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                       | lF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | 5-Aryl-1,3,4-oxadiazol-2-amines Decorated with Long Alkyl and Their Analogues: Synthesis, Acetyl- and<br>Butyrylcholinesterase Inhibition and Docking Study. Pharmaceuticals, 2022, 15, 400.                                                  | 3.8 | 3         |
| 2  | The synthesis and cholinesterase inhibitory activities of solasodine analogues with seven-membered F<br>ring. Journal of Steroid Biochemistry and Molecular Biology, 2021, 205, 105776.                                                       | 2.5 | 10        |
| 3  | Hydrazones of 4-(Trifluoromethyl)benzohydrazide as New Inhibitors of Acetyl- and<br>Butyrylcholinesterase. Molecules, 2021, 26, 989.                                                                                                          | 3.8 | 15        |
| 4  | Trimethoxycinnamates and Their Cholinesterase Inhibitory Activity. Applied Sciences (Switzerland), 2021, 11, 4691.                                                                                                                            | 2.5 | 5         |
| 5  | Novel Sulfonamide-Based Carbamates as Selective Inhibitors of BChE. International Journal of Molecular Sciences, 2021, 22, 9447.                                                                                                              | 4.1 | 11        |
| 6  | Novel propargylamine-based inhibitors of cholinesterases and monoamine oxidases: Synthesis,<br>biological evaluation and docking study. Bioorganic Chemistry, 2021, 116, 105301.                                                              | 4.1 | 11        |
| 7  | Novel Aminoguanidine Hydrazone Analogues: From Potential Antimicrobial Agents to Potent<br>Cholinesterase Inhibitors. Pharmaceuticals, 2021, 14, 1229.                                                                                        | 3.8 | 6         |
| 8  | N-Alkyl-2-[4-(trifluoromethyl)benzoyl]hydrazine-1-carboxamides and Their Analogues: Synthesis and<br>Multitarget Biological Activity. Molecules, 2020, 25, 2268.                                                                              | 3.8 | 8         |
| 9  | N-[3,5-Bis(trifluoromethyl)phenyl]-5-bromo-2-hydroxybenzamide Analogues: Novel Acetyl- and<br>Butyrylcholinesterase Inhibitors. Current Topics in Medicinal Chemistry, 2020, 20, 2094-2105.                                                   | 2.1 | 4         |
| 10 | Novel Iodinated Hydrazide-hydrazones and their Analogues as Acetyl- and Butyrylcholinesterase<br>Inhibitors. Current Topics in Medicinal Chemistry, 2020, 20, 2106-2117.                                                                      | 2.1 | 9         |
| 11 | SAR-mediated Similarity Assessment of the Property Profile for New, Silicon-Based AChE/BChE<br>Inhibitors. International Journal of Molecular Sciences, 2019, 20, 5385.                                                                       | 4.1 | 10        |
| 12 | 2-Hydroxy-N-phenylbenzamides and Their Esters Inhibit Acetylcholinesterase and<br>Butyrylcholinesterase. Biomolecules, 2019, 9, 698.                                                                                                          | 4.0 | 15        |
| 13 | Derivatives of the β-Crinane Amaryllidaceae Alkaloid Haemanthamine as Multi-Target Directed Ligands<br>for Alzheimer's Disease. Molecules, 2019, 24, 1307.                                                                                    | 3.8 | 22        |
| 14 | Synthesis and characterization of new inhibitors of cholinesterases based on N-phenylcarbamates: In<br>vitro study of inhibitory effect, type of inhibition, lipophilicity and molecular docking. Bioorganic<br>Chemistry, 2018, 78, 280-289. | 4.1 | 8         |
| 15 | Investigation of salicylanilide and 4-chlorophenol-based N-monosubstituted carbamates as potential inhibitors of acetyl- and butyrylcholinesterase. Bioorganic Chemistry, 2018, 80, 668-673.                                                  | 4.1 | 12        |
| 16 | Synthesis of readily available fluorophenylalanine derivatives and investigation of their biological activity. Bioorganic Chemistry, 2017, 71, 244-256.                                                                                       | 4.1 | 7         |
| 17 | Novel Cholinesterase Inhibitors Based on O-Aromatic N,N-Disubstituted Carbamates and Thiocarbamates. Molecules, 2016, 21, 191.                                                                                                                | 3.8 | 35        |
| 18 | Synthesis and in vitro evaluation of novel rhodanine derivatives as potential cholinesterase inhibitors. Bioorganic Chemistry, 2016, 68, 23-29.                                                                                               | 4.1 | 24        |

| #  | Article                                                                                                                                                                                                                              | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Synthesis, characterization and in vitro evaluation of substituted N-(2-phenylcyclopropyl)carbamates<br>as acetyl- and butyrylcholinesterase inhibitors. Journal of Enzyme Inhibition and Medicinal Chemistry,<br>2016, 31, 173-179. | 5.2 | 8         |
| 20 | Cholinesterase-based biosensors. Journal of Enzyme Inhibition and Medicinal Chemistry, 2016, 31, 180-193.                                                                                                                            | 5.2 | 32        |
| 21 | Salicylanilide diethyl phosphates as cholinesterases inhibitors. Bioorganic Chemistry, 2015, 58, 48-52.                                                                                                                              | 4.1 | 19        |
| 22 | Diethyl 2-(Phenylcarbamoyl)phenyl Phosphorothioates: Synthesis, Antimycobacterial Activity and<br>Cholinesterase Inhibition. Molecules, 2014, 19, 7152-7168.                                                                         | 3.8 | 11        |
| 23 | Synthesis and in vitro evaluation of new derivatives of 2-substituted-6-fluorobenzo[d]thiazoles as cholinesterase inhibitors. Bioorganic and Medicinal Chemistry, 2013, 21, 1735-1748.                                               | 3.0 | 33        |