
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9385681/publications.pdf Version: 2024-02-01

SAVAS TASOCUU

#	Article	IF	CITATIONS
1	3D bioprinted organâ€onâ€chips. Aggregate, 2023, 4, .	5.2	35
2	Biomedical Applications of Magnetic Levitation. Advanced NanoBiomed Research, 2022, 2, .	1.7	17
3	Toilet-based continuous health monitoring using urine. Nature Reviews Urology, 2022, 19, 219-230.	1.9	32
4	Deep Learning-Enabled Technologies for Bioimage Analysis. Micromachines, 2022, 13, 260.	1.4	9
5	Magnetic levitation for space exploration. Trends in Biotechnology, 2022, 40, 915-917.	4.9	17
6	Three-Dimensional-Bioprinted Liver Chips and Challenges. Applied Sciences (Switzerland), 2022, 12, 5029.	1.3	13
7	3D bioprinted glioma models. Progress in Biomedical Engineering, 2022, 4, 042001.	2.8	14
8	3D-printed contact lenses: challenges towards translation and commercialization. Journal of 3D Printing in Medicine, 2022, 6, 105-108.	1.0	1
9	Machine Learning-Enabled Prediction of 3D-Printed Microneedle Features. Biosensors, 2022, 12, 491.	2.3	27
10	Microfluidic Invasion Chemotaxis Platform for 3D Neurovascular Co-Culture. Fluids, 2022, 7, 238.	0.8	11
11	3D-Printed Microneedles for Point-of-Care Biosensing Applications. Micromachines, 2022, 13, 1099.	1.4	22
12	Smartphone-based colorimetric detection system for portable health tracking. Analytical Methods, 2021, 13, 4361-4369.	1.3	28
13	Biomedical optical fibers. Lab on A Chip, 2021, 21, 627-640.	3.1	37
14	Long-term cyclic use of a sample collector for toilet-based urine analysis. Scientific Reports, 2021, 11, 2170.	1.6	10
15	Increasing the packing density of assays in paper-based microfluidic devices. Biomicrofluidics, 2021, 15, 011502.	1.2	22
16	Microfluidics for microalgal biotechnology. Biotechnology and Bioengineering, 2021, 118, 1716-1734.	1.7	23
17	Plant-Based Scaffolds in Tissue Engineering. ACS Biomaterials Science and Engineering, 2021, 7, 926-938.	2.6	37
18	Hemp-Based Microfluidics. Micromachines, 2021, 12, 182.	1.4	13

2

#	Article	IF	CITATIONS
19	Shape Fidelity of 3D-Bioprinted Biodegradable Patches. Micromachines, 2021, 12, 195.	1.4	14
20	Optical sensors for continuous glucose monitoring. Progress in Biomedical Engineering, 2021, 3, 022004.	2.8	27
21	Portable magnetic levitation technologies. Advanced Optical Technologies, 2021, 10, 109-121.	0.9	17
22	Glioma-on-a-Chip Models. Micromachines, 2021, 12, 490.	1.4	19
23	Finger-Actuated Microneedle Array for Sampling Body Fluids. Applied Sciences (Switzerland), 2021, 11, 5329.	1.3	23
24	Low-Cost Optical Assays for Point-of-Care Diagnosis in Resource-Limited Settings. ACS Sensors, 2021, 6, 2108-2124.	4.0	58
25	3D printing of microneedle arrays: challenges towards clinical translation. Journal of 3D Printing in Medicine, 2021, 5, 65-70.	1.0	16
26	Design and Adoption of Low-Cost Point-of-Care Diagnostic Devices: Syrian Case. Micromachines, 2021, 12, 882.	1.4	1
27	Intracranial Sensors for Continuous Monitoring of Neurophysiology. Advanced Materials Technologies, 2021, 6, 2100339.	3.0	7
28	3D-printed microneedles in biomedical applications. IScience, 2021, 24, 102012.	1.9	113
29	Mitochondrial donation in translational medicine; from imagination to reality. Journal of Translational Medicine, 2020, 18, 367.	1.8	11
30	Sensing of electrolytes in urine using a miniaturized paper-based device. Scientific Reports, 2020, 10, 13620.	1.6	40
31	Machine learning-enabled multiplexed microfluidic sensors. Biomicrofluidics, 2020, 14, 061506.	1.2	29
32	Pushing the Limits of Spatial Assay Resolution for Paper-Based Microfluidics Using Low-Cost and High-Throughput Pen Plotter Approach. Micromachines, 2020, 11, 611.	1.4	16
33	A computational study of droplet-based bioprinting: Effects of viscoelasticity. Physics of Fluids, 2019, 31, .	1.6	28
34	Development and characterization of a low-cost 3D bioprinter. Bioprinting, 2019, 13, e00044.	2.9	33
35	Assessing reusability of microfluidic devices: Urinary protein uptake by PDMS-based channels after long-term cyclic use. Talanta, 2019, 192, 455-462.	2.9	5
36	A Hybrid Approach for Large-scale Fabrication of Paper-based Electrochemical Assays for Biomedical Diagnosis. Celal Bayar Universitesi Fen Bilimleri Dergisi, 2019, 15, 271-277.	0.1	0

#	Article	IF	CITATIONS
37	Bioprinting for Neural Tissue Engineering. Trends in Neurosciences, 2018, 41, 31-46.	4.2	138
38	Editorial for the Special Issue on 3D Printed Microfluidic Devices. Micromachines, 2018, 9, 609.	1.4	10
39	Assessing the Reusability of 3D-Printed Photopolymer Microfluidic Chips for Urine Processing. Micromachines, 2018, 9, 520.	1.4	9
40	Towards preserving post-printing cell viability and improving the resolution: Past, present, and future of 3D bioprinting theory. Bioprinting, 2018, 11, e00034.	2.9	58
41	Emerging Anti-Fouling Methods: Towards Reusability of 3D-Printed Devices for Biomedical Applications. Micromachines, 2018, 9, 196.	1.4	16
42	3D printing for drug manufacturing: A perspective on the future of pharmaceuticals. International Journal of Bioprinting, 2018, 4, 119.	1.7	40
43	3D printing for drug manufacturing: A perspective on the future of pharmaceuticals. International Journal of Bioprinting, 2018, 4, 119.	1.7	16
44	High-throughput rapid-prototyping of low-cost paper-based microfluidics. Scientific Reports, 2017, 7, 3553.	1.6	60
45	Continuous-Ink, Multiplexed Pen-Plotter Approach for Low-Cost, High-Throughput Fabrication of Paper-Based Microfluidics. Analytical Chemistry, 2017, 89, 6351-6357.	3.2	52
46	Commercialization of 3D-printed microfluidic devices. Journal of 3D Printing in Medicine, 2017, 1, 85-89.	1.0	13
47	Photocrosslinking-based bioprinting: Examining crosslinking schemes. Bioprinting, 2017, 5, 10-18.	2.9	76
48	Paper-based assays for urine analysis. Biomicrofluidics, 2017, 11, 051501.	1.2	56
49	Magnetic Levitation Coupled with Portable Imaging and Analysis for Disease Diagnostics. Journal of Visualized Experiments, 2017, , .	0.2	5
50	3D-printed smartphone-based device for label-free cell separation. Journal of 3D Printing in Medicine, 2017, 1, 155-164.	1.0	22
51	3D-printed smartphone-based point of care tool for fluorescence- and magnetophoresis-based cytometry. Lab on A Chip, 2017, 17, 2839-2851.	3.1	99
52	Building Blocks for Bottom-Up Neural Tissue Engineering: Tools for In Vitro Assembly and Interrogation of Neural Circuits. , 2016, , 123-144.		1
53	Cell-Encapsulating Hydrogels for Biosensing. , 2016, , 327-356.		2
54	Three-Dimensional-Printed Carnivorous Plant with Snap Trap. 3D Printing and Additive Manufacturing, 2016, 3, 244-251.	1.4	8

#	Article	IF	CITATIONS
55	Selfâ€Contained Handheld Magnetic Platform for Point of Care Cytometry in Biological Samples. Advanced Materials Technologies, 2016, 1, 1600144.	3.0	44
56	Smart-phone attachable, flow-assisted magnetic focusing device. RSC Advances, 2016, 6, 93922-93931.	1.7	41
57	Labelâ€Free Sickle Cell Disease Diagnosis using a Lowâ€Cost, Handheld Platform. Advanced Materials Technologies, 2016, 1, 1600100.	3.0	47
58	Disease Diagnostics: Labelâ€Free Sickle Cell Disease Diagnosis using a Lowâ€Cost, Handheld Platform (Adv.) Tj	ETQ <u>9</u> 000	rgBT /Overloo
59	Towards Single-Step Biofabrication of Organs on a Chip via 3D Printing. Trends in Biotechnology, 2016, 34, 685-688.	4.9	94
60	3D-printed microfluidic devices. Biofabrication, 2016, 8, 022001.	3.7	259
61	3D-printed microfluidic chips with patterned, cell-laden hydrogel constructs. Biofabrication, 2016, 8, 025019.	3.7	113
62	A Bioprinted Liver-on-a-Chip for Drug Screening Applications. Trends in Biotechnology, 2016, 34, 681-682.	4.9	121
63	Utilizing stem cells for three-dimensional neural tissue engineering. Biomaterials Science, 2016, 4, 768-784.	2.6	60
64	Advancing cancer research using bioprinting for tumor-on-a-chip platforms. International Journal of Bioprinting, 2016, 2, 3.	1.7	56
65	Cytometry: Levitational Image Cytometry with Temporal Resolution (Adv. Mater. 26/2015). Advanced Materials, 2015, 27, 3900-3900.	11.1	3
66	Sickle cell detection using a smartphone. Scientific Reports, 2015, 5, 15022.	1.6	111
67	Levitational Image Cytometry with Temporal Resolution. Advanced Materials, 2015, 27, 3901-3908.	11.1	78
68	Smart-Phone Based Magnetic Levitation for Measuring Densities. PLoS ONE, 2015, 10, e0134400.	1.1	47
69	Advances in Nanotechnology and Microfluidics for Human Papillomavirus Diagnostics. Proceedings of the IEEE, 2015, 103, 161-178.	16.4	32
70	Biomaterials: Magnetic Levitational Assembly for Living Material Fabrication (Adv. Healthcare Mater.) Tj ETQq0 () 0 rggT /C	verlock 10 Tf

71	Bioprinting for cancer research. Trends in Biotechnology, 2015, 33, 504-513.	4.9	313
72	Deformation of a single mouse oocyte in a constricted microfluidic channel. Microfluidics and Nanofluidics, 2015, 19, 883-890.	1.0	44

#	Article	IF	CITATIONS
73	Engineering a microfluidic organ model using 3-dimensional micropatterned cellular constructs. , 2015, , .		0
74	Multiscale assembly for tissue engineering and regenerative medicine. Trends in Biotechnology, 2015, 33, 269-279.	4.9	162
75	Microfluidics for sperm research. Trends in Biotechnology, 2015, 33, 221-229.	4.9	107
76	Magnetic Levitational Assembly for Living Material Fabrication. Advanced Healthcare Materials, 2015, 4, 1469-1476.	3.9	84
77	Two-dimensional numerical study of flow dynamics of a nucleated cell tethered under shear flow. Chemical Engineering Science, 2014, 119, 236-244.	1.9	12
78	Microscale Assembly: Microscale Assembly Directed by Liquid-Based Template (Adv. Mater. 34/2014). Advanced Materials, 2014, 26, 6044-6044.	11.1	1
79	Untethered micro-robotic coding of three-dimensional material composition. Nature Communications, 2014, 5, 3124.	5.8	241
80	Guided and magnetic self-assembly of tunable magnetoceptive gels. Nature Communications, 2014, 5, 4702.	5.8	137
81	Microscale Assembly Directed by Liquidâ€Based Template. Advanced Materials, 2014, 26, 5936-5941.	11.1	111
82	Micro-a-fluidics ELISA for Rapid CD4 Cell Count at the Point-of-Care. Scientific Reports, 2014, 4, 3796.	1.6	85
83	Manipulating biological agents and cells in micro-scale volumes for applications in medicine. Chemical Society Reviews, 2013, 42, 5788.	18.7	100
84	Nanoplasmonic Quantitative Detection of Intact Viruses from Unprocessed Whole Blood. ACS Nano, 2013, 7, 4733-4745.	7.3	158
85	Bioprinting for stem cell research. Trends in Biotechnology, 2013, 31, 10-19.	4.9	382
86	Exhaustion of Racing Sperm in Natureâ€Mimicking Microfluidic Channels During Sorting. Small, 2013, 9, 3374-3384.	5.2	96
87	Functional droplet networks. Nature Materials, 2013, 12, 478-479.	13.3	62
88	Transient swelling, spreading, and drug delivery by a dissolved anti-HIV microbicide-bearing film. Physics of Fluids, 2013, 25, 31901.	1.6	16
89	Microfluidic Sorting: Exhaustion of Racing Sperm in Natureâ€Mimicking Microfluidic Channels During Sorting (Small 20/2013). Small, 2013, 9, 3366-3366.	5.2	0
90	Flow induces epithelial-mesenchymal transition, cellular heterogeneity and biomarker modulation in 3D ovarian cancer nodules. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E1974-83.	3.3	184

#	Article	IF	CITATIONS
91	Paramagnetic Levitational Assembly of Hydrogels. Advanced Materials, 2013, 25, 1137-1143.	11.1	77
92	In Vitro Three-Dimensional Cancer Culture Models. , 2013, , 635-665.		7
93	Transient spreading and swelling behavior of a gel deploying an anti-HIV topical microbicide. Journal of Non-Newtonian Fluid Mechanics, 2012, 187-188, 36-42.	1.0	18
94	Smart Interface Materials Integrated with Microfluidics for Onâ€Đemand Local Capture and Release of Cells. Advanced Healthcare Materials, 2012, 1, 661-668.	3.9	48
95	Emerging Technologies for Assembly of Microscale Hydrogels. Advanced Healthcare Materials, 2012, 1, 149-158.	3.9	83
96	The effects of inhomogeneous boundary dilution on the coating flow of an anti-HIV microbicide vehicle. Physics of Fluids, 2011, 23, 093101.	1.6	16
97	Transport Processes in Vaginal Films that Release Anti-HIV Microbicide Molecules. Biophysical Journal, 2011, 100, 489a.	0.2	6
98	The consequences of yield stress on deployment of a non-Newtonian anti-HIV microbicide gel. Journal of Non-Newtonian Fluid Mechanics, 2011, 166, 1116-1122.	1.0	15
99	A continuous mapping of sleep states through association of EEG with a mesoscale cortical model. Journal of Computational Neuroscience, 2011, 30, 471-487.	0.6	19
100	A front-tracking method for computational modeling of impact and spreading of viscous droplets on solid walls. Computers and Fluids, 2010, 39, 615-625.	1.3	85
101	Impact of a compound droplet on a flat surface: A model for single cell epitaxy. Physics of Fluids, 2010, 22, .	1.6	91
102	Epithelial Coating Mechanisms by Semi-Solid Materials: Application to Microbicide Gels. Biophysical Journal, 2010, 98, 604a.	0.2	3
103	Impact and Spreading of a Microdroplet on a Solid Wall. , 2009, , .		2
104	Plasmon resonance differences between the near- and far-field and implications for molecular detection. Proceedings of SPIE, 2009, , .	0.8	9
105	The effect of soluble surfactant on the transient motion of a buoyancy-driven bubble. Physics of Fluids, 2008, 20, .	1.6	72
106	Recent Technological Developments in the Diagnosis and Treatment of Cerebral Edema. Advanced NanoBiomed Research, 0, , 2100001.	1.7	7
107	Density-based Food Analysis Using a Smartphone. Celal Bayar Universitesi Fen Bilimleri Dergisi, 0, , 181-186.	0.1	0