Zihai Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9385542/publications.pdf

Version: 2024-02-01

150	7,940	49	82
papers	citations	h-index	g-index
155	155	155	10620 citing authors
all docs	docs citations	times ranked	

#	Article	IF	CITATIONS
1	Immune checkpoint inhibitor-related thrombocytopenia: incidence, risk factors and effect on survival. Cancer Immunology, Immunotherapy, 2022, 71, 1157-1165.	2.0	12
2	COVID-19 mRNA booster vaccines elicit strong protection against SARS-CoV-2 Omicron variant in patients with cancer. Cancer Cell, 2022, 40, 117-119.	7.7	61
3	Treatment with soluble CD24 attenuates COVID-19-associated systemic immunopathology. Journal of Hematology and Oncology, 2022, 15, 5.	6.9	30
4	Canopy Homolog 2 contributes to liver oncogenesis by promoting unfolded protein response–dependent destabilization of tumor protein P53. Hepatology, 2022, 76, 1587-1601.	3.6	7
5	Efficacy and safety of CD24Fc in hospitalised patients with COVID-19: a randomised, double-blind, placebo-controlled, phase 3 study. Lancet Infectious Diseases, The, 2022, 22, 611-621.	4.6	22
6	Transforming growth factor–β1 in regulatory T cell biology. Science Immunology, 2022, 7, eabi4613.	5.6	76
7	Sex differences in bladder cancer: emerging data and call to action. Nature Reviews Urology, 2022, 19, 447-449.	1.9	7
8	Androgen conspires with the CD8 ⁺ T cell exhaustion program and contributes to sex bias in cancer. Science Immunology, 2022, 7, .	5.6	74
9	IL-27 Induces CCL5 Production by T Lymphocytes, Which Contributes to Antitumor Activity. Journal of Immunology, 2022, , ji2100885.	0.4	5
10	Converting Tumoral PD-L1 into a 4-1BB Agonist for Safer and More Effective Cancer Immunotherapy. Cancer Discovery, 2022, 12, 1184-1186.	7.7	4
11	The role of biomarkers in personalized immunotherapy. Biomarker Research, 2022, 10, 32.	2.8	27
12	Translational landscape of glioblastoma immunotherapy for physicians: guiding clinical practice with basic scientific evidence. Journal of Hematology and Oncology, 2022, 15, .	6.9	23
13	Sex-biased adaptive immune regulation in cancer development and therapy. IScience, 2022, 25, 104717.	1.9	10
14	Mechanism of Sex Differences in Bladder Cancer: Evident and Elusive Sex-biasing Factors. Bladder Cancer, 2022, 8, 241-254.	0.2	5
15	IRIS-FGM: an integrative single-cell RNA-Seq interpretation system for functional gene module analysis. Bioinformatics, 2021, 37, 3045-3047.	1.8	3
16	Differential immune signatures in the tumor microenvironment are associated with colon cancer racial disparities. Cancer Medicine, 2021, 10, 1805-1814.	1.3	17
17	Autocrine transforming growth factor β1 in regulatory TÂcell biologyâ€"gone but not missed. Immunity, 2021, 54, 395-396.	6.6	8
18	Hedgehog-induced PD-L1 on tumor-associated macrophages is critical for suppression of tumor-infiltrating CD8+ T cell function. JCI Insight, 2021, 6, .	2.3	47

#	Article	IF	Citations
19	Pharmacological Regulation of Tumor Hypoxia in Model Murine Tumors and Spontaneous Canine Tumors. Cancers, 2021, 13, 1696.	1.7	5
20	Immune checkpoint inhibitor-related thrombocytopenia: Incidence, risk factors, and effect on overall survival Journal of Clinical Oncology, 2021, 39, e14549-e14549.	0.8	0
21	Myeloid Endoplasmic Reticulum Resident Chaperone GP96 Facilitates Inflammation and Steatosis in Alcoholâ€Associated Liver Disease. Hepatology Communications, 2021, 5, 1165-1182.	2.0	10
22	Combination strategies to maximize the benefits of cancer immunotherapy. Journal of Hematology and Oncology, 2021, 14, 156.	6.9	202
23	Type 2 dendritic cells mediate control of cytotoxic T cell resistant tumors. JCI Insight, 2021, 6, .	2.3	21
24	Pancreatic cancer cells render tumor-associated macrophages metabolically reprogrammed by a GARP and DNA methylation-mediated mechanism. Signal Transduction and Targeted Therapy, 2021, 6, 366.	7.1	37
25	Impaired neutralizing antibody response to COVID-19 mRNA vaccines in cancer patients. Cell and Bioscience, 2021, 11, 197.	2.1	32
26	Targeting Metabolic Pathways of Myeloid Cells Improves Cancer Immunotherapy. Frontiers in Cell and Developmental Biology, 2021, 9, 747863.	1.8	12
27	Preoperative platelet counts and postoperative outcomes in cancer surgery: a multicenter, retrospective cohort study. Platelets, 2020, 31, 79-87.	1.1	13
28	Thrombin contributes to cancer immune evasion via proteolysis of platelet-bound GARP to activate LTGF- \hat{l}^2 . Science Translational Medicine, 2020, 12, .	5.8	76
29	Moesin, an Ezrin/Radixin/Moesin Family Member, Regulates Hepatic Fibrosis. Hepatology, 2020, 72, 1073-1084.	3.6	20
30	Extracellular gp96 is a crucial mediator for driving immune hyperactivation and liver damage. Scientific Reports, 2020, 10, 12596.	1.6	8
31	Platelet and hemoglobin count at diagnosis are associated with survival in African American and Caucasian patients with colorectal cancer. Cancer Epidemiology, 2020, 67, 101746.	0.8	13
32	Innate Immune Responses to Highly Pathogenic Coronaviruses and Other Significant Respiratory Viral Infections. Frontiers in Immunology, 2020, 11, 1979.	2.2	25
33	RNA binding protein PCBP1 is an intracellular immune checkpoint for shaping T cell responses in cancer immunity. Science Advances, 2020, 6, eaaz3865.	4.7	32
34	IL6 Fuels Durable Memory for Th17 Cell–Mediated Responses to Tumors. Cancer Research, 2020, 80, 3920-3932.	0.4	16
35	GRP94 regulates M1 macrophage polarization and insulin resistance. American Journal of Physiology - Endocrinology and Metabolism, 2020, 318, E1004-E1013.	1.8	13
36	Summary of the 2019 Blood and Marrow Transplant Clinical Trials Network Myeloma Intergroup Workshop on Minimal Residual Disease and Immune Profiling. Biology of Blood and Marrow Transplantation, 2020, 26, e247-e255.	2.0	5

#	Article	IF	Citations
37	Molecular Stressors Engender Protein Connectivity Dysfunction through Aberrant N-Glycosylation of a Chaperone. Cell Reports, 2020, 31, 107840.	2.9	32
38	Next-generation immuno-oncology agents: current momentum shifts in cancer immunotherapy. Journal of Hematology and Oncology, 2020, 13, 29.	6.9	146
39	Rigorous Plasma Microbiome Analysis Method Enables Disease Association Discovery in Clinic. Frontiers in Microbiology, 2020, 11, 613268.	1.5	12
40	Changes of plasma GARP-LTGF \hat{i}^21 complex during chemoradiotherapy may predict survival in non-small cell lung cancer (NSCLC) Journal of Clinical Oncology, 2020, 38, e21042-e21042.	0.8	0
41	Cutting Edge: Targeting Thrombocytes to Rewire Anticancer Immunity in the Tumor Microenvironment and Potentiate Efficacy of PD-1 Blockade. Journal of Immunology, 2019, 203, 1105-1110.	0.4	29
42	Development of molecular and pharmacological switches for chimeric antigen receptor T cells. Experimental Hematology and Oncology, 2019, 8, 27.	2.0	7
43	GARP Dampens Cancer Immunity by Sustaining Function and Accumulation of Regulatory T Cells in the Colon. Cancer Research, 2019, 79, 1178-1190.	0.4	46
44	Truncation of TGF- \hat{l}^2 docking receptor GARP is linked to human disease. European Journal of Human Genetics, 2019, 27, 1157-1158.	1.4	2
45	Low-Dose IFNγ Induces Tumor Cell Stemness in Tumor Microenvironment of Non–Small Cell Lung Cancer. Cancer Research, 2019, 79, 3737-3748.	0.4	89
46	Regulation of dendritic cell function improves survival in experimental sepsis through immune chaperone. Innate Immunity, 2019, 25, 235-243.	1.1	7
47	The Role of Platelets in Tumor Growth, Metastasis, and Immune Evasion., 2019, , 547-561.		10
48	Fueling Cancer Immunotherapy With Common Gamma Chain Cytokines. Frontiers in Immunology, 2019, 10, 263.	2.2	69
49	Systemic translocation of Staphylococcus drives autoantibody production in HIV disease. Microbiome, 2019, 7, 25.	4.9	39
50	Platelet count correlates with stage and predicts survival in melanoma. Platelets, 2019, 30, 1042-1046.	1.1	20
51	Definition of a multiple myeloma progenitor population in mice driven by enforced expression of XBP1s. JCI Insight, 2019, 4, .	2.3	13
52	The Emerging Roles of Endoplasmic Reticulum Stress in Balancing Immunity and Tolerance in Health and Diseases: Mechanisms and Opportunities. Frontiers in Immunology, 2019, 10, 3154.	2.2	61
53	GRP94 Is an Essential Regulator of Pancreatic β-Cell Development, Mass, and Function in Male Mice. Endocrinology, 2018, 159, 1062-1073.	1.4	21
54	IL-2 and Beyond in Cancer Immunotherapy. Journal of Interferon and Cytokine Research, 2018, 38, 45-68.	0.5	83

#	Article	IF	Citations
55	Postdiagnosis aspirin use and overall survival in patients with melanoma. Journal of the American Academy of Dermatology, 2018, 78, 949-956.e1.	0.6	9
56	Immunoregulatory functions and the therapeutic implications of GARP-TGF- \hat{l}^2 in inflammation and cancer. Journal of Hematology and Oncology, 2018, 11, 24.	6.9	69
57	Recent updates in cancer immunotherapy: a comprehensive review and perspective of the 2018 China Cancer Immunotherapy Workshop in Beijing. Journal of Hematology and Oncology, 2018, 11, 142.	6.9	95
58	Sex as a predictor of response to cancer immunotherapy. Lancet Oncology, The, 2018, 19, e379.	5.1	5
59	Sex Differences in Using Systemic Inflammatory Markers to Prognosticate Patients with Head and Neck Squamous Cell Carcinoma. Cancer Epidemiology Biomarkers and Prevention, 2018, 27, 1176-1185.	1.1	13
60	Roles, Mechanisms, and Opportunities of Heat Shock Protein gp96/grp94 in Infections and Inflammation-Associated Malignancies. , 2018, , 123-140.		0
61	B lymphocytes confer immune tolerance via cell surface GARP-TGF-β complex. JCI Insight, 2018, 3, .	2.3	39
62	Is CD47 an innate immune checkpoint for tumor evasion?. Journal of Hematology and Oncology, 2017, 10, 12.	6.9	139
63	PD-1, PD-L1 (B7-H1) and Tumor-Site Immune Modulation Therapy: The Historical Perspective. Journal of Hematology and Oncology, 2017, 10, 34.	6.9	82
64	Drosophila canopy b is a cochaperone of glycoprotein 93. Journal of Biological Chemistry, 2017, 292, 6657-6666.	1.6	9
65	Vaccination with poly(IC:LC) and peptide-pulsed autologous dendritic cells in patients with pancreatic cancer. Journal of Hematology and Oncology, 2017, 10, 82.	6.9	105
66	Platelets subvert T cell immunity against cancer via GARP-TGF \hat{I}^2 axis. Science Immunology, 2017, 2, .	5.6	237
67	Antibody-mediated neutralization of soluble MIC significantly enhances CTLA4 blockade therapy. Science Advances, 2017, 3, e1602133.	4.7	27
68	Gut homeostasis and regulatory T cell induction depend on molecular chaperone gp96 in CD11c+ cells. Scientific Reports, 2017, 7, 2171.	1.6	20
69	Murine Th17 cells utilize IL-2 receptor gamma chain cytokines but are resistant to cytokine withdrawal-induced apoptosis. Cancer Immunology, Immunotherapy, 2017, 66, 737-751.	2.0	7
70	Glycoprotein A repetitions predominant (GARP) positively regulates transforming growth factor (TGF) Î ² 3 and is essential for mouse palatogenesis. Journal of Biological Chemistry, 2017, 292, 18091-18097.	1.6	19
71	Structural and Functional Analysis of GRP94 in the Closed State Reveals an Essential Role for the Pre-N Domain and a Potential Client-Binding Site. Cell Reports, 2017, 20, 2800-2809.	2.9	48
72	Modulation of Endoplasmic Reticulum Stress Controls CD4+ T-cell Activation and Antitumor Function. Cancer Immunology Research, 2017, 5, 666-675.	1.6	35

#	Article	IF	CITATIONS
73	In vivo and in situ programming of tumor immunity by combining oncolytics and PD-1 immune checkpoint blockade. Experimental Hematology and Oncology, 2017, 6, 15.	2.0	7
74	CNPY2 is a key initiator of the PERK–CHOP pathway of the unfolded protein response. Nature Structural and Molecular Biology, 2017, 24, 834-839.	3.6	42
75	$\hat{l}^2\text{-catenin}$ and PI3K \hat{l}' inhibition expands precursor Th17 cells with heightened stemness and antitumor activity. JCI Insight, 2017, 2, .	2.3	35
76	Membrane-organizing protein moesin controls Treg differentiation and antitumor immunity via TGF- \hat{l}^2 signaling. Journal of Clinical Investigation, 2017, 127, 1321-1337.	3.9	46
77	Mapping the Interactome of a Major Mammalian Endoplasmic Reticulum Heat Shock Protein 90. PLoS ONE, 2017, 12, e0169260.	1.1	20
78	Interaction of Toll-Like Receptors with the Molecular Chaperone Gp96 Is Essential for Its Activation of Cytotoxic T Lymphocyte Response. PLoS ONE, 2016, 11, e0155202.	1.1	16
79	Exploring the Functional Complementation between Grp94 and Hsp90. PLoS ONE, 2016, 11, e0166271.	1.1	10
80	Neutrophilâ€ŧoâ€lymphocyte ratio and overall survival in all sites of head and neck squamous cell carcinoma. Head and Neck, 2016, 38, E1068-74.	0.9	115
81	Surface Expression of TGF \hat{I}^2 Docking Receptor GARP Promotes Oncogenesis and Immune Tolerance in Breast Cancer. Cancer Research, 2016, 76, 7106-7117.	0.4	76
82	Harnessing the IL-7/IL-7Rαaxis to improve tumor immunotherapy. Oncolmmunology, 2016, 5, e1122865.	2.1	3
83	Key differences in B cell activation patterns and immune correlates among treated HIV-infected patients versus healthy controls following influenza vaccination. Vaccine, 2016, 34, 1945-1955.	1.7	13
84	Endoplasmic reticulum chaperone gp96 in macrophages is essential for protective immunity during Gramâ€negative pneumonia. Journal of Pathology, 2016, 238, 74-84.	2.1	21
85	CD24 blunts oral squamous cancer development and dampens the functional expansion of myeloid-derived suppressor cells. Oncolmmunology, 2016, 5, e1226719.	2.1	11
86	Targeting inflammasome/IL-1 pathways for cancer immunotherapy. Scientific Reports, 2016, 6, 36107.	1.6	216
87	GRP94/gp96 in Cancer. Advances in Cancer Research, 2016, 129, 165-190.	1.9	59
88	Clients and Oncogenic Roles of Molecular Chaperone gp96/grp94. Current Topics in Medicinal Chemistry, 2016, 16, 2765-2778.	1.0	87
89	A feasibility and safety study of vaccination with Poly-ICLC and peptide-pulsed dendritic cells in patients with advanced pancreatic adenocarcinoma Journal of Clinical Oncology, 2016, 34, e14579-e14579.	0.8	0
90	Cell therapy must be regulated as medicine. Experimental Hematology and Oncology, 2015, 5, 26.	2.0	3

#	Article	IF	CITATIONS
91	Aberrant high expression of immunoglobulin G in epithelial stem/progenitor-like cells contributes to tumor initiation and metastasis. Oncotarget, 2015, 6, 40081-40094.	0.8	36
92	PRMT5 Is Required for Lymphomagenesis Triggered by Multiple Oncogenic Drivers. Cancer Discovery, 2015, 5, 288-303.	7.7	127
93	Humoral immune responses to Streptococcus pneumoniae in the setting of HIV-1 infection. Vaccine, 2015, 33, 4430-4436.	1.7	21
94	Nonblocking Monoclonal Antibody Targeting Soluble MIC Revamps Endogenous Innate and Adaptive Antitumor Responses and Eliminates Primary and Metastatic Tumors. Clinical Cancer Research, 2015, 21, 4819-4830.	3.2	39
95	Pass quantity, focus on quality. Journal of Hematology and Oncology, 2015, 8, 27.	6.9	1
96	Structure–Activity Relationship in a Purine-Scaffold Compound Series with Selectivity for the Endoplasmic Reticulum Hsp90 Paralog Grp94. Journal of Medicinal Chemistry, 2015, 58, 3922-3943.	2.9	50
97	IL- $2R\hat{l}\pm$ mediates temporal regulation of IL-2 signaling and enhances immunotherapy. Science Translational Medicine, 2015, 7, 311ra170.	5.8	49
98	Endoplasmic reticulum heat shock protein gp96 maintains liver homeostasis and promotes hepatocellular carcinogenesis. Journal of Hepatology, 2015, 62, 879-888.	1.8	63
99	Endoplasmic reticulum heat shock protein gp96/grp94 is a proâ€oncogenic chaperone, not a tumor suppressor. Hepatology, 2015, 61, 1766-1767.	3.6	8
100	GP96 is a GARP chaperone and controls regulatory T cell functions. Journal of Clinical Investigation, 2015, 125, 859-869.	3.9	76
101	GP96: safeguarding Treg. Oncotarget, 2015, 6, 19936-19937.	0.8	6
102	Molecular regulation of macrophages in unleashing cancer-related inflammation. Oncolmmunology, 2014, 3, e27659.	2.1	9
103	Endoplasmic reticulum stress in hepatic steatosis and inflammatory bowel diseases. Frontiers in Genetics, 2014, 5, 242.	1.1	54
104	To affinity and beyond: Harnessing the T Cell receptor for cancer immunotherapy. Human Vaccines and Immunotherapeutics, 2014, 10, 3313-3321.	1.4	29
105	Essential role of the molecular chaperone gp96 in regulating melanogenesis. Pigment Cell and Melanoma Research, 2014, 27, 82-89.	1.5	14
106	Lower circulating platelet counts and antiplatelet therapy independently predict better outcomes in patients with head and neck squamous cell carcinoma. Journal of Hematology and Oncology, 2014, 7, 65.	6.9	59
107	Deletion of CD24 Impairs Development of Heat Shock Protein gp96–Driven Autoimmune Disease through Expansion of Myeloid-Derived Suppressor Cells. Journal of Immunology, 2014, 192, 5679-5686.	0.4	15
108	Th17 Cells in Cancer: The Ultimate Identity Crisis. Frontiers in Immunology, 2014, 5, 276.	2.2	257

#	Article	IF	CITATIONS
109	Plasmacytoid Dendritic Cells Mediate Synergistic Effects of HIV and Lipopolysaccharide on CD27 ⁺ IgD ^{â€"} Memory B Cell Apoptosis. Journal of Virology, 2014, 88, 11430-11441.	1.5	14
110	Immune Chaperone gp96 Drives the Contributions of Macrophages to Inflammatory Colon Tumorigenesis. Cancer Research, 2014, 74, 446-459.	0.4	56
111	Characterization of the Grp94/OS-9 Chaperone–Lectin Complex. Journal of Molecular Biology, 2014, 426, 3590-3605.	2.0	15
112	Sex Differences in Monocyte Activation in Systemic Lupus Erythematosus (SLE). PLoS ONE, 2014, 9, e114589.	1.1	25
113	Molecular Chaperone gp96 Is a Novel Therapeutic Target of Multiple Myeloma. Clinical Cancer Research, 2013, 19, 6242-6251.	3.2	64
114	Cancer immunotherapy: are we there yet?. Experimental Hematology and Oncology, 2013, 2, 33.	2.0	22
115	Fact or fiction - identifying the elusive multiple myeloma stem cell. Journal of Hematology and Oncology, 2013, 6, 91.	6.9	32
116	The forgotten tale of immunoglobulin allotypes in cancer risk and treatment. Experimental Hematology and Oncology, 2013, 2, 6.	2.0	28
117	α7 Helix Region of α1 Domain Is Crucial for Integrin Binding to Endoplasmic Reticulum Chaperone gp96. Journal of Biological Chemistry, 2013, 288, 18243-18248.	1.6	33
118	Essential roles of grp94 in gut homeostasis via chaperoning canonical Wnt pathway. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 6877-6882.	3.3	101
119	Molecular Profiling of Multiple Human Cancers Defines an Inflammatory Cancer-Associated Molecular Pattern and Uncovers KPNA2 as a Uniform Poor Prognostic Cancer Marker. PLoS ONE, 2013, 8, e57911.	1.1	70
120	Microbial TLR Agonists and Humoral Immunopathogenesis in HIV Disease. Epidemiology (Sunnyvale,) Tj ETQq0 0	0 rgBT /O	verlock 10 Tf
121	The Molecular Chaperone gp96/GRP94 Interacts with Toll-like Receptors and Integrins via Its C-terminal Hydrophobic Domain. Journal of Biological Chemistry, 2012, 287, 6735-6742.	1.6	89
122	Deletion of muscle GRP94 impairs both muscle and body growth by inhibiting local IGF production. FASEB Journal, 2012, 26, 3691-3702.	0.2	69
123	Publish, not perish: Introducing Experimental Hematology & Docology. Experimental Hematology and Oncology, 2012, 1, 1.	2.0	7
124	Murine but Not Human Basophil Undergoes Cell-Specific Proteolysis of a Major Endoplasmic Reticulum Chaperone. PLoS ONE, 2012, 7, e39442.	1.1	10
125	Heat-shock protein gp96/grp94 is an essential chaperone for the platelet glycoprotein Ib-IX-V complex. Blood, 2011, 117, 7136-7144.	0.6	60
126	Unfolded protein response in cancer: the Physician's perspective. Journal of Hematology and Oncology, 2011, 4, 8.	6.9	152

#	Article	IF	CITATIONS
127	gp96, an endoplasmic reticulum master chaperone for integrins and Toll-like receptors, selectively regulates early T and B lymphopoiesis. Blood, 2010, 115, 2380-2390.	0.6	109
128	Ovarian cancer immunotherapy: opportunities, progresses and challenges. Journal of Hematology and Oncology, 2010, 3, 7.	6.9	56
129	Folding of Toll-like receptors by the HSP90 paralogue gp96 requires a substrate-specific cochaperone. Nature Communications, 2010, 1, 79.	5.8	169
130	The anti-myeloma activity of a novel purine scaffold HSP90 inhibitor PU-H71 is via inhibition of both HSP90A and HSP90B1. Journal of Hematology and Oncology, 2010, 3, 40.	6.9	41
131	<i>Drosophila</i> Glycoprotein 93 Is an Ortholog of Mammalian Heat Shock Protein gp96 (grp94,) Tj ETQq1 1 Journal of Immunology, 2009, 183, 5121-5128.	0.784314 r 0.4	gBT /Overlo 36
132	Vaccination with Human Pluripotent Stem Cells Generates a Broad Spectrum of Immunological and Clinical Responses Against Colon Cancer. Stem Cells, 2009, 27, 3103-3111.	1.4	76
133	Heat-shock proteins in infection-mediated inflammation-induced tumorigenesis. Journal of Hematology and Oncology, 2009, 2, 5.	6.9	39
134	Endoplasmic reticulum HSP90b1 (gp96, grp94) optimizes B-cell function via chaperoning integrin and TLR but not immunoglobulin. Blood, 2008, 112, 1223-1230.	0.6	111
135	TLR4 Hyperresponsiveness via Cell Surface Expression of Heat Shock Protein gp96 Potentiates Suppressive Function of Regulatory T Cells. Journal of Immunology, 2007, 178, 3219-3225.	0.4	47
136	Heat Shock Protein gp96 Is a Master Chaperone for Toll-like Receptors and Is Important in the Innate Function of Macrophages. Immunity, 2007, 26, 215-226.	6.6	408
137	Essential roles of IL-12 and dendritic cells but not IL-23 and macrophages in lupus-like diseases initiated by cell surface HSP gp96. European Journal of Immunology, 2007, 37, 706-715.	1.6	30
138	Molecular Chaperones as Inducers of Tumour Immunity. , 2005, , 300-318.		2
139	Combination of Imatinib Mesylate with Autologous Leukocyte-Derived Heat Shock Protein and Chronic Myelogenous Leukemia. Clinical Cancer Research, 2005, 11, 4460-4468.	3.2	100
140	Roles of heat shock protein gp96 in the ER quality control: redundant or unique function?. Molecules and Cells, 2005, 20, 173-82.	1.0	92
141	In vitro reconstitution of heat shock protein–peptide complexes for generating peptide-specific vaccines against cancers and infectious diseases. Methods, 2004, 32, 25-28.	1.9	18
142	Heatâ€Shock Proteins. Current Protocols in Immunology, 2003, 58, Appendix 1T.	3.6	171
143	Cell surface expression of an endoplasmic reticulum resident heat shock protein gp96 triggers MyD88-dependent systemic autoimmune diseases. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 15824-15829.	3.3	168
144	Cell surface expression of heat shock protein gp96 enhances cross-presentation of cellular antigens and the generation of tumor-specific T cell memory. Cancer Immunity, 2003, 3, 1.	3.2	57

ZIHAI LI

#	Article	lF	CITATION
145	An integrated view of the roles and mechanisms of heat shock protein GP96-peptide complex in eliciting immune response. Frontiers in Bioscience - Landmark, 2002, 7, d731-751.	3.0	43
146	Roles of heat-shock proteins in antigen presentation and cross-presentation. Current Opinion in Immunology, 2002, 14, 45-51.	2.4	276
147	HSPPC-96: a personalised cancer vaccine. Expert Opinion on Biological Therapy, 2001, 1, 539-547.	1.4	35
148	Cell Surface Targeting of Heat Shock Protein gp96 Induces Dendritic Cell Maturation and Antitumor Immunity. Journal of Immunology, 2001, 167, 6731-6735.	0.4	151
149	Heat Shock Protein–Peptide Complexes, Reconstituted In Vitro, Elicit Peptide-specific Cytotoxic T Lymphocyte Response and Tumor Immunity. Journal of Experimental Medicine, 1997, 186, 1315-1322.	4.2	526
150	Concomitant Medication Effects on Immune Checkpoint Inhibitor Efficacy and Toxicity. Frontiers in Oncology, 0, 12, .	1.3	6