Evan D Rosen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9385434/publications.pdf

Version: 2024-02-01

67 papers 20,449 citations

47006 47 h-index 66 g-index

72 all docs 72 docs citations

times ranked

72

25975 citing authors

#	Article	IF	CITATIONS
1	Adipocyte differentiation from the inside out. Nature Reviews Molecular Cell Biology, 2006, 7, 885-896.	37.0	2,163
2	Reactive oxygen species have a causal role in multiple forms of insulin resistance. Nature, 2006, 440, 944-948.	27.8	2,159
3	Adipocytes as regulators of energy balance and glucose homeostasis. Nature, 2006, 444, 847-853.	27.8	1,810
4	PPARÎ 3 Is Required for the Differentiation of Adipose Tissue In Vivo and In Vitro. Molecular Cell, 1999, 4, 611-617.	9.7	1,804
5	What We Talk About When We Talk About Fat. Cell, 2014, 156, 20-44.	28.9	1,789
6	C/EBPα induces adipogenesis through PPARγ: a unified pathway. Genes and Development, 2002, 16, 22-26.	5.9	1,207
7	PPARÎ ³ : a Nuclear Regulator of Metabolism, Differentiation, and Cell Growth. Journal of Biological Chemistry, 2001, 276, 37731-37734.	3.4	1,034
8	Cross-Regulation of C/EBPÎ \pm and PPARÎ 3 Controls the Transcriptional Pathway of Adipogenesis and Insulin Sensitivity. Molecular Cell, 1999, 3, 151-158.	9.7	908
9	A molecular census of arcuate hypothalamus and median eminence cell types. Nature Neuroscience, 2017, 20, 484-496.	14.8	635
10	Transcriptional Control of Adipose Lipid Handling by IRF4. Cell Metabolism, 2011, 13, 249-259.	16.2	508
11	Comparative Epigenomic Analysis of Murine and Human Adipogenesis. Cell, 2010, 143, 156-169.	28.9	460
12	The Adipokine Lipocalin 2 Is Regulated by Obesity and Promotes Insulin Resistance. Diabetes, 2007, 56, 2533-2540.	0.6	387
13	A Smooth Muscle-Like Origin for Beige Adipocytes. Cell Metabolism, 2014, 19, 810-820.	16.2	373
14	Muscle-specific PPARÎ ³ -deficient mice develop increased adiposity and insulin resistance but respond to thiazolidinediones. Journal of Clinical Investigation, 2003, 112, 608-618.	8.2	366
15	Lessons on Conditional Gene Targeting in Mouse Adipose Tissue. Diabetes, 2013, 62, 864-874.	0.6	281
16	A single-cell atlas of human and mouse white adipose tissue. Nature, 2022, 603, 926-933.	27.8	277
17	The transcriptional basis of adipocyte development. Prostaglandins Leukotrienes and Essential Fatty Acids, 2005, 73, 31-34.	2.2	265
18	IRF4 Is a Key Thermogenic Transcriptional Partner of PGC-1α. Cell, 2014, 158, 69-83.	28.9	239

#	Article	IF	CITATIONS
19	Genetic Analysis of Adipogenesis through Peroxisome Proliferator-activated Receptor \hat{l}^3 Isoforms. Journal of Biological Chemistry, 2002, 277, 41925-41930.	3.4	220
20	Prospective functional classification of all possible missense variants in PPARG. Nature Genetics, 2016, 48, 1570-1575.	21.4	210
21	Genetic Depletion of Adipocyte Creatine Metabolism Inhibits Diet-Induced Thermogenesis and Drives Obesity. Cell Metabolism, 2017, 26, 660-671.e3.	16.2	187
22	Critical Role for Ebf1 and Ebf2 in the Adipogenic Transcriptional Cascade. Molecular and Cellular Biology, 2007, 27, 743-757.	2.3	183
23	Characterization of Cre recombinase models for the study of adipose tissue. Adipocyte, 2014, 3, 206-211.	2.8	178
24	Warming Induces Significant Reprogramming of Beige, but Not Brown, Adipocyte Cellular Identity. Cell Metabolism, 2018, 27, 1121-1137.e5.	16.2	168
25	Rare variants in <i>PPARG</i> with decreased activity in adipocyte differentiation are associated with increased risk of type 2 diabetes. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 13127-13132.	7.1	152
26	Brown Adipose Tissue Controls Skeletal Muscle Function via the Secretion of Myostatin. Cell Metabolism, 2018, 28, 631-643.e3.	16.2	147
27	Targeted Elimination of Peroxisome Proliferator-Activated Receptor \hat{I}^3 in \hat{I}^2 Cells Leads to Abnormalities in Islet Mass without Compromising Glucose Homeostasis. Molecular and Cellular Biology, 2003, 23, 7222-7229.	2.3	141
28	UCP1 deficiency causes brown fat respiratory chain depletion and sensitizes mitochondria to calcium overload-induced dysfunction. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 7981-7986.	7.1	136
29	IRF3 promotes adipose inflammation and insulin resistance and represses browning. Journal of Clinical Investigation, 2016, 126, 2839-2854.	8.2	134
30	Interferon Regulatory Factors Are Transcriptional Regulators of Adipogenesis. Cell Metabolism, 2008, 7, 86-94.	16.2	122
31	Simultaneous Transcriptional and Epigenomic Profiling from Specific Cell Types within Heterogeneous Tissues InÂVivo. Cell Reports, 2017, 18, 1048-1061.	6.4	117
32	Epigenetics and Epigenomics: Implications for Diabetes and Obesity. Diabetes, 2018, 67, 1923-1931.	0.6	116
33	Regulation of Early Adipose Commitment by Zfp521. PLoS Biology, 2012, 10, e1001433.	5.6	114
34	Ablation of adipocyte creatine transport impairs thermogenesis and causes diet-induced obesity. Nature Metabolism, 2019, 1, 360-370.	11.9	103
35	The orphan nuclear receptor chicken ovalbumin upstream promoter-transcription factor II is a critical regulator of adipogenesis. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 2421-2426.	7.1	101
36	Interferon Regulatory Factor 4 Regulates Obesity-Induced Inflammation Through Regulation of Adipose Tissue Macrophage Polarization. Diabetes, 2013, 62, 3394-3403.	0.6	100

3

#	Article	IF	CITATIONS
37	Dnmt3a is an epigenetic mediator of adipose insulin resistance. ELife, 2017, 6, .	6.0	97
38	The Molecular Control of Adipogenesis, with Special Reference to Lymphatic Pathology. Annals of the New York Academy of Sciences, 2002, 979, 143-158.	3.8	70
39	FOSL2 promotes leptin gene expression in human and mouse adipocytes. Journal of Clinical Investigation, 2012, 122, 1010-1021.	8.2	67
40	lmaging mass spectrometry demonstrates age-related decline in human adipose plasticity. JCI Insight, 2017, 2, e90349.	5.0	66
41	The Synergy between Palmitate and TNF-α for CCL2 Production Is Dependent on the TRIF/IRF3 Pathway: Implications for Metabolic Inflammation. Journal of Immunology, 2018, 200, 3599-3611.	0.8	64
42	Identification of nuclear hormone receptor pathways causing insulin resistance by transcriptional and epigenomic analysis. Nature Cell Biology, 2015, 17, 44-56.	10.3	61
43	Nuclear Mechanisms of Insulin Resistance. Trends in Cell Biology, 2016, 26, 341-351.	7.9	60
44	Isthmin-1 is an adipokine that promotes glucose uptake and improves glucose tolerance and hepatic steatosis. Cell Metabolism, 2021, 33, 1836-1852.e11.	16.2	56
45	Adipocyte glucocorticoid receptor is important in lipolysis and insulin resistance due to exogenous steroids, but not insulin resistance caused by high fat feeding. Molecular Metabolism, 2017, 6, 1150-1160.	6.5	55
46	A minor role for lipocalin 2 in high-fat diet-induced glucose intolerance. American Journal of Physiology - Endocrinology and Metabolism, 2011, 301, E825-E835.	3.5	52
47	Transcriptional targets in adipocyte biology. Expert Opinion on Therapeutic Targets, 2009, 13, 975-986.	3.4	49
48	IRF3 reduces adipose thermogenesis via ISG15-mediated reprogramming of glycolysis. Journal of Clinical Investigation, 2021, 131, .	8.2	43
49	Early B-cell Factor-1 (EBF1) Is a Key Regulator of Metabolic and Inflammatory Signaling Pathways in Mature Adipocytes. Journal of Biological Chemistry, 2013, 288, 35925-35939.	3.4	41
50	Coordinated transcriptional regulation of bone homeostasis by Ebf1 and Zfp521 in both mesenchymal and hematopoietic lineages. Journal of Experimental Medicine, 2013, 210, 969-985.	8.5	40
51	Neurotensin is an anti-thermogenic peptide produced by lymphatic endothelial cells. Cell Metabolism, 2021, 33, 1449-1465.e6.	16.2	38
52	Adipocyte-Specific Transgenic and Knockout Models. Methods in Enzymology, 2014, 537, 1-16.	1.0	33
53	New insights into adipocyte-specific leptin gene expression. Adipocyte, 2012, 1, 168-172.	2.8	32
54	Making Biological Sense of GWAS Data: Lessons from the FTO Locus. Cell Metabolism, 2015, 22, 538-539.	16.2	25

#	Article	IF	Citations
55	Epigenomic and transcriptional control of insulin resistance. Journal of Internal Medicine, 2016, 280, 443-456.	6.0	24
56	Mesothelial cells are not a source of adipocytes in mice. Cell Reports, 2021, 36, 109388.	6.4	22
57	Adipocytes fail to maintain cellular identity during obesity due to reduced PPARÎ ³ activity and elevated TGFÎ ² -SMAD signaling. Molecular Metabolism, 2020, 42, 101086.	6.5	16
58	Insulin-sensitizing effects of vitamin D repletion mediated by adipocyte vitamin D receptor: Studies in humans and mice. Molecular Metabolism, 2020, 42, 101095.	6. 5	16
59	Energy Balance: A New Role for PPARα. Current Biology, 2003, 13, R961-R963.	3.9	13
60	Discovering metabolic disease gene interactions by correlated effects on cellular morphology. Molecular Metabolism, 2019, 24, 108-119.	6.5	13
61	New drugs from fat bugs?. Cell Metabolism, 2006, 3, 1-2.	16.2	11
62	Hepatic IRF3 fuels dysglycemia in obesity through direct regulation of <i>Ppp2r1b</i> Science Translational Medicine, 2022, 14, eabh3831.	12.4	11
63	Two paths to fat. Nature Cell Biology, 2015, 17, 360-361.	10.3	10
64	Crosstalk Between Adipose and Lymphatics in Health and Disease. Endocrinology, 2022, 163, .	2.8	6
65	Mutational analysis of <i>PPARG</i> as a candidate tumour suppressor gene in enteropancreatic endocrine tumours. Clinical Endocrinology, 2005, 62, 603-606.	2.4	4
66	Epigenetic Approaches to Adipose Biology. Research and Perspectives in Endocrine Interactions, 2010, , $101-110$.	0.2	0
67	4261 Insulin Sensitizing Effects of Vitamin D Mediated through Reduced Adipose Tissue Inflammation and Fibrosis: Evidence from a Human Randomized Trial and Mice Studies. Journal of Clinical and Translational Science, 2020, 4, 97-98.	0.6	0