Gerrit A Luinstra

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9384986/publications.pdf

Version: 2024-02-01

516710 361022 1,215 40 16 35 citations g-index h-index papers 43 43 43 1351 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Disentangled UHMWPE@silica powders for potential use in power bed fusion based additive manufacturing. European Polymer Journal, 2022, 163, 110936.	5.4	4
2	Coupling Kinetic Modelling with SAOS and LAOS Rheology of Poly(<i>n</i> i>â€butyl acrylate). Macromolecular Rapid Communications, 2022, 43, e2100620.	3.9	4
3	Investigations on the Ethylene Polymerization with Bisarylimine Pyridine Iron (BIP) Catalysts. Catalysts, 2021, 11, 407.	3.5	6
4	Optimization of a 3D-printed tubular reactor for free radical polymerization by CFD. Journal of Flow Chemistry, 2021, 11, 539-552.	1.9	7
5	Synthesis and antibacterial behavior of bio-composite materials-based on poly(Îμ-caprolactone)/bentonite. European Polymer Journal, 2021, 156, 110602.	5.4	8
6	Toward the Direct Synthesis of HDPE Powders for Powder Bed Fusion Based Additive Manufacturing. Macromolecular Materials and Engineering, 2021, 306, 2100477.	3.6	2
7	Additive manufacturing of <scp>PA12</scp> carbon nanotube composites with a novel laser polymer deposition process. Journal of Applied Polymer Science, 2021, 138, 50395.	2.6	12
8	DMC-Mediated Copolymerization of CO2 and PO—Mechanistic Aspects Derived from Feed and Polymer Composition. Catalysts, 2020, 10, 1066.	3. 5	13
9	3D printing as chemical reaction engineering booster. Advances in Chemical Engineering, 2020, 56, 97-137.	0.9	15
10	Fully bio-derived CO ₂ polymers for non-isocyanate based polyurethane synthesis. Green Chemistry, 2020, 22, 969-978.	9.0	41
11	Catalytic Chain Transfer Copolymerization of Propylene Oxide and CO 2 using Zinc Glutarate Catalyst. ChemistryOpen, 2019, 8, 828-839.	1.9	11
12	Synthesis of poly($\hat{l}\mu$ -caprolactone)-grafted guar gum by surface-initiated ring-opening polymerization. Carbohydrate Polymers, 2019, 220, 95-102.	10.2	25
13	Isotactic polypropylene metal oxide and silica nanocomposites by a twoâ€step process comprising in situ olefin polymerization and melt compounding. Polymer International, 2019, 68, 946-954.	3.1	4
14	Polyurethane elastomers based on amphiphilic poly(caprolactone) af€xi>bà€poly(caprolactone) triblockcopolyols. Journal of Polymer Science Part A, 2018, 56, 1162-1172.	2.3	8
15	Aqueous food-grade and cosmetic-grade surfactant systems for the continuous countercurrent cloud point extraction. Separation and Purification Technology, 2018, 202, 76-85.	7.9	18
16	Synthesis of a linear lowâ€density polyethylene/MgO@Mg(OH) ₂ nanocomposite using modified <i>in situ</i> polymerization. Polymer International, 2018, 67, 1359-1367.	3.1	4
17	Zinc glutarate-mediated copolymerization of CO2 and PO – parameter studies using design of experiments. Catalysis Science and Technology, 2017, 7, 2897-2905.	4.1	17
18	Enzyme- and Metal-Catalyzed Synthesis of a New Biobased Polyester. Organic Process Research and Development, 2017, 21, 1245-1252.	2.7	5

#	Article	IF	Citations
19	Viscoelastic properties of aqueous guar gum derivative solutions under large amplitude oscillatory shear (LAOS). Carbohydrate Polymers, 2016, 153, 312-319.	10.2	47
20	Extensional flow behavior of aqueous guar gum derivative solutions by capillary breakup elongational rheometry (CaBER). Carbohydrate Polymers, 2016, 136, 834-840.	10.2	26
21	Facile Synthesis of Hydroxylâ€Terminated Oligoethylenes. Macromolecular Materials and Engineering, 2015, 300, 218-225.	3 . 6	8
22	Toward Self-Healing Hydrogels Using One-Pot Thiol–Ene Click and Borax-Diol Chemistry. ACS Macro Letters, 2015, 4, 673-678.	4.8	125
23	Sequential Post-modifications of Polybutadiene for Industrial Applications. Advances in Polymer Science, 2015, , 163-201.	0.8	14
24	Influence of norbornene dicarboxylic anhydride on the copolymerization of carbon dioxide and propylene oxide. European Polymer Journal, 2015, 73, 297-307.	5 . 4	10
25	Structure–property relationships of carboxymethyl hydroxypropyl guar gum in water and a hyperentanglement parameter. Carbohydrate Polymers, 2015, 119, 159-166.	10.2	33
26	Thermoâ€Responsive Microcapsules Based on Guar Gum Derivatives. Macromolecular Symposia, 2014, 346, 32-35.	0.7	6
27	Wood plastic composites from poly(propylene carbonate) and poplar wood flour – Mechanical, thermal and morphological properties. European Polymer Journal, 2014, 51, 167-176.	5.4	40
28	Postpolymerization modification of reactive polymers derived from vinylcyclopropane. III. Polymer sequential functionalization using a combination of amines with alkoxyamines, hydrazides, isocyanates, or acyl halides. Journal of Polymer Science Part A, 2014, 52, 2841-2849.	2.3	13
29	Post-polymerization modification of reactive polymers derived from vinylcyclopropane: a poly(vinylcyclopropane) derivative with physical gelation and UCST behaviour in ethanol–water mixtures. Polymer Chemistry, 2014, 5, 5823-5828.	3.9	20
30	Post-polymerization modification of reactive polymers derived from vinylcyclopropane: 1. synthesis and thermo-responsive behaviour. Polymer Chemistry, 2013, 4, 2724.	3.9	27
31	Thermoplastic Polyurethane Cross-Linked by Functionalized Silica. Nanostructure Evolution under Mechanical Load. Macromolecules, 2013, 46, 4041-4052.	4.8	23
32	Semiâ€Batch Copolymerization of Propylene Oxide and Carbon Dioxide. Macromolecular Symposia, 2013, 333, 190-196.	0.7	3
33	Iron Catalyst in the Preparation of Polyolefin Composites. Advances in Polymer Science, 2013, , 341-362.	0.8	4
34	Material Properties of Poly(Propylene Carbonates). Advances in Polymer Science, 2011, , 29-48.	0.8	115
35	ADMETâ€Polymerization of Dienes based on Sustainable Chemicals. Macromolecular Symposia, 2010, 293, 15-19.	0.7	18
36	Poly(Propylene Carbonate), Old Copolymers of Propylene Oxide and Carbon Dioxide with New Interests: Catalysis and Material Properties. Polymer Reviews, 2008, 48, 192-219.	10.9	363

#	Article	IF	CITATIONS
37	Poly(propylene carbonate), old CO ₂ Copolymer with New Attractiveness. Macromolecular Symposia, 2007, 259, 203-209.	0.7	29
38	New Zinc Dicarboxylate Catalysts for the CO2/Propylene Oxide Copolymerization Reaction: Activity Enhancement Through Zn(II)-Ethylsulfinate Initiating Groups. Macromolecular Chemistry and Physics, 2004, 205, 42-47.	2.2	82
39	HDPE@UHMWPE Powders for Power Bed Fusion based Additive Manufacturing. Macromolecular Materials and Engineering, 0, , 2100964.	3.6	1
40	Combining Functional Prototyping of 3D Printed Reactors with a Modular Reactor Setup for Continuous Emulsion Polymerization. Chemie-Ingenieur-Technik, 0, , .	0.8	O