Aurélie Cébron

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/938426/publications.pdf Version: 2024-02-01

		361413	414414
32	1,730	20	32
papers	citations	h-index	g-index
32	32	32	2055
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Taxonomic and functional trait-based approaches suggest that aerobic and anaerobic soil microorganisms allow the natural attenuation of oil from natural seeps. Scientific Reports, 2022, 12, 7245.	3.3	3
2	Response of Poplar and Associated Fungal Endophytic Communities to a PAH Contamination Gradient. International Journal of Molecular Sciences, 2022, 23, 5909.	4.1	4
3	Altered fungal communities in contaminated soils from French industrial brownfields. Journal of Hazardous Materials, 2021, 406, 124296.	12.4	16
4	Functional potential of sewage sludge digestate microbes to degrade aliphatic hydrocarbons during bioremediation of a petroleum hydrocarbons contaminated soil. Journal of Environmental Management, 2021, 280, 111648.	7.8	20
5	Isotopic tracing reveals single-cell assimilation of a macroalgal polysaccharide by a few marine Flavobacteria and Gammaproteobacteria. ISME Journal, 2021, 15, 3062-3075.	9.8	16
6	Using plant litter decomposition as an indicator of ecosystem response to soil contamination. Ecological Indicators, 2021, 125, 107554.	6.3	6
7	BactoTraits – A functional trait database to evaluate how natural and man-induced changes influence the assembly of bacterial communities. Ecological Indicators, 2021, 130, 108047.	6.3	13
8	DNA stable isotope probing reveals contrasted activity and phenanthrene-degrading bacteria identity in a gradient of anthropized soils. FEMS Microbiology Ecology, 2019, 95, .	2.7	8
9	Bacterial seeding potential of digestate in bioremediation of diesel contaminated soil. International Biodeterioration and Biodegradation, 2019, 143, 104715.	3.9	25
10	Effect of digestate application on microbial respiration and bacterial communities' diversity during bioremediation of weathered petroleum hydrocarbons contaminated soils. Science of the Total Environment, 2019, 670, 271-281.	8.0	48
11	Stable isotope probing and metagenomics highlight the effect of plants on uncultured phenanthrene-degrading bacterial consortium in polluted soil. ISME Journal, 2019, 13, 1814-1830.	9.8	72
12	Soil Properties and Multi-Pollution Affect Taxonomic and Functional Bacterial Diversity in a Range of French Soils Displaying an Anthropisation Gradient. Microbial Ecology, 2019, 77, 993-1013.	2.8	23
13	Soil Particles and Phenanthrene Interact in Defining the Metabolic Profile of Pseudomonas putida G7: A Vibrational Spectroscopy Approach. Frontiers in Microbiology, 2018, 9, 2999.	3.5	5
14	High PAH degradation and activity of degrading bacteria during alfalfa growth where a contrasted active community developed in comparison to unplanted soil. Environmental Science and Pollution Research, 2018, 25, 29556-29571.	5.3	24
15	Bioremediation of PAH-contamined soils: Consequences on formation and degradation of polar-polycyclic aromatic compounds and microbial community abundance. Journal of Hazardous Materials, 2017, 329, 1-10.	12.4	53
16	Rhizosphere effect is stronger than PAH concentration on shaping spatial bacterial assemblages along centimetre-scale depth gradients. Canadian Journal of Microbiology, 2017, 63, 881-893.	1.7	8
17	Fishpond dams affect leafâ€litter processing and associated detritivore communities along intermittent lowâ€order streams. Freshwater Biology, 2017, 62, 1741-1755.	2.4	2
18	Short-Term Rhizosphere Effect on Available Carbon Sources, Phenanthrene Degradation, and Active Microbiome in an Aged-Contaminated Industrial Soil. Frontiers in Microbiology, 2016, 7, 92.	3.5	69

Aurélie Cébron

#	Article	IF	CITATIONS
19	Isolation and substrate screening of polycyclic aromatic hydrocarbon degrading bacteria from soil with long history of contamination. International Biodeterioration and Biodegradation, 2016, 107, 1-9.	3.9	50
20	The Bacterial and Fungal Diversity of an Aged PAH- and Heavy Metal-Contaminated Soil is Affected by Plant Cover and Edaphic Parameters. Microbial Ecology, 2016, 71, 711-724.	2.8	109
21	Mapping the Centimeter-Scale Spatial Variability of PAHs and Microbial Populations in the Rhizosphere of Two Plants. PLoS ONE, 2015, 10, e0142851.	2.5	19
22	Impact of clay mineral, wood sawdust or root organic matter on the bacterial and fungal community structures in two aged PAH-contaminated soils. Environmental Science and Pollution Research, 2015, 22, 13724-13738.	5.3	49
23	Inoculation of PAH-degrading strains of Fusarium solani and Arthrobacter oxydans in rhizospheric sand and soil microcosms: microbial interactions and PAH dissipation. Biodegradation, 2013, 24, 569-581.	3.0	41
24	Experimental increase in availability of a PAH complex organic contamination from an aged contaminated soil: Consequences on biodegradation. Environmental Pollution, 2013, 177, 98-105.	7.5	60
25	Functional Assays and Metagenomic Analyses Reveals Differences between the Microbial Communities Inhabiting the Soil Horizons of a Norway Spruce Plantation. PLoS ONE, 2013, 8, e55929.	2.5	147
26	PAH biotransformation and sorption by Fusarium solani and Arthrobacter oxydans isolated from a polluted soil in axenic cultures and mixed co-cultures. International Biodeterioration and Biodeterioration. 2012, 68, 28-35.	3.9	51
27	Long-term in situ dynamics of the fungal communities in a multi-contaminated soil are mainly driven by plants. FEMS Microbiology Ecology, 2012, 82, 169-181.	2.7	47
28	Biological functioning of PAH-polluted and thermal desorption-treated soils assessed by fauna and microbial bioindicators. Research in Microbiology, 2011, 162, 896-907.	2.1	42
29	Root exudates modify bacterial diversity of phenanthrene degraders in PAHâ€polluted soil but not phenanthrene degradation rates. Environmental Microbiology, 2011, 13, 722-736.	3.8	137
30	Root exudates affect phenanthrene biodegradation, bacterial community and functional gene expression in sand microcosms. International Biodeterioration and Biodegradation, 2011, 65, 947-953.	3.9	75
31	Influence of Vegetation on the In Situ Bacterial Community and Polycyclic Aromatic Hydrocarbon (PAH) Degraders in Aged PAH-Contaminated or Thermal-Desorption-Treated Soil. Applied and Environmental Microbiology, 2009, 75, 6322-6330.	3.1	110
32	Real-Time PCR quantification of PAH-ring hydroxylating dioxygenase (PAH-RHDα) genes from Gram positive and Gram negative bacteria in soil and sediment samples. Journal of Microbiological Methods, 2008, 73, 148-159.	1.6	378