
Adam E Mullick

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9384089/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Antisense Therapy Attenuates Phospholamban p.(Arg14del) Cardiomyopathy in Mice and Reverses Protein Aggregation. International Journal of Molecular Sciences, 2022, 23, 2427.	1.8	5
2	Interventional hepatic apoC-III knockdown improves atherosclerotic plaque stability and remodeling by triglyceride lowering. JCI Insight, 2022, 7, .	2.3	7
3	Antisense Inhibition of Angiotensinogen With IONIS-AGT-LRx. JACC Basic To Translational Science, 2021, 6, 485-496.	1.9	30
4	Eruptive xanthoma model reveals endothelial cells internalize and metabolize chylomicrons, leading to extravascular triglyceride accumulation. Journal of Clinical Investigation, 2021, 131, .	3.9	14
5	Linda "Kirt―Curtiss, PhD, 1943–2021. Arteriosclerosis, Thrombosis, and Vascular Biology, 2021, 41, 1837-1838.	1.1	Ο
6	Phospholamban antisense oligonucleotides improve cardiac function in murine cardiomyopathy. Nature Communications, 2021, 12, 5180.	5.8	24
7	Loss of Hepatic Angiotensinogen Attenuates Sepsis-Induced Myocardial Dysfunction. Circulation Research, 2021, 129, 547-564.	2.0	32
8	CREBH normalizes dyslipidemia and halts atherosclerosis in diabetes by decreasing circulating remnant lipoproteins. Journal of Clinical Investigation, 2021, 131, .	3.9	12
9	Renal Angiotensinogen Is Predominantly Liver Derived in Nonhuman Primates. Arteriosclerosis, Thrombosis, and Vascular Biology, 2021, 41, 2851-2853.	1.1	10
10	Deletion of AT1a (Angiotensin II Type 1a) Receptor or Inhibition of Angiotensinogen Synthesis Attenuates Thoracic Aortopathies in Fibrillin1 ^{C1041G/+} Mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 2021, 41, 2538-2550.	1.1	15
11	Therapeutic inhibition of RBM20 improves diastolic function in a murine heart failure model and human engineered heart tissue. Science Translational Medicine, 2021, 13, eabe8952.	5.8	14
12	Effects of Renin-Angiotensin Inhibition on ACE2 (Angiotensin-Converting Enzyme 2) and TMPRSS2 (Transmembrane Protease Serine 2) Expression. Hypertension, 2020, 76, e29-e30.	1.3	31
13	Reducing YAP expression in <i>Pkd1</i> mutant mice does not improve the cystic phenotype. Journal of Cellular and Molecular Medicine, 2020, 24, 8876-8882.	1.6	5
14	Chemerin as a Driver of Hypertension: A Consideration. American Journal of Hypertension, 2020, 33, 975-986.	1.0	36
15	Endothelial cell CD36 deficiency prevents normal angiogenesis and vascular repair. American Journal of Translational Research (discontinued), 2020, 12, 7737-7761.	0.0	2
16	Fatty acid conjugation enhances potency of antisense oligonucleotides in muscle. Nucleic Acids Research, 2019, 47, 6029-6044.	6.5	93
17	Different blood pressure responses in hypertensive rats following chemerin mRNA inhibition in dietary high fat compared to dietary high-salt conditions. Physiological Genomics, 2019, 51, 553-561.	1.0	16
18	Antisense oligonucleotides targeting angiotensinogen: insights from animal studies. Bioscience Reports, 2019, 39, .	1.1	16

#	Article	IF	CITATIONS
19	Targeted Deletion of Hepatocyte <i>Abca1</i> Increases Plasma HDL (High-Density Lipoprotein) Reverse Cholesterol Transport via the LDL (Low-Density Lipoprotein) Receptor. Arteriosclerosis, Thrombosis, and Vascular Biology, 2019, 39, 1747-1761.	1.1	28
20	Conjugation of hydrophobic moieties enhances potency of antisense oligonucleotides in the muscle of rodents and non-human primates. Nucleic Acids Research, 2019, 47, 6045-6058.	6.5	48
21	Angiotensinogen and Megalin Interactions Contribute to Atherosclerosis—Brief Report. Arteriosclerosis, Thrombosis, and Vascular Biology, 2019, 39, 150-155.	1.1	42
22	Whole-Body but Not Hepatic Knockdown of Chemerin by Antisense Oligonucleotide Decreases Blood Pressure in Rats. Journal of Pharmacology and Experimental Therapeutics, 2018, 365, 212-218.	1.3	16
23	Novel Reversible Model of Atherosclerosis and Regression Using Oligonucleotide Regulation of the LDL Receptor. Circulation Research, 2018, 122, 560-567.	2.0	50
24	(Pro)renin Receptor Inhibition Reprograms Hepatic Lipid Metabolism and Protects Mice From Diet-Induced Obesity and Hepatosteatosis. Circulation Research, 2018, 122, 730-741.	2.0	46
25	Attenuation of accelerated renal cystogenesis in <i>Pkd1</i> mice by renin-angiotensin system blockade. American Journal of Physiology - Renal Physiology, 2018, 314, F210-F218.	1.3	16
26	Endothelial cell CD36 optimizes tissue fatty acid uptake. Journal of Clinical Investigation, 2018, 128, 4329-4342.	3.9	148
27	Mechanism of Increased LDL (Low-Density Lipoprotein) and Decreased Triglycerides With SGLT2 (Sodium-Glucose Cotransporter 2) Inhibition. Arteriosclerosis, Thrombosis, and Vascular Biology, 2018, 38, 2207-2216.	1.1	93
28	Renin angiotensin aldosterone inhibition in the treatment of cardiovascular disease. Pharmacological Research, 2017, 125, 57-71.	3.1	96
29	Blood Pressure Lowering and Safety Improvements With Liver Angiotensinogen Inhibition in Models of Hypertension and Kidney Injury. Hypertension, 2017, 70, 566-576.	1.3	49
30	Hypercholesterolemia Induced by a PCSK9 Gain-of-Function Mutation Augments Angiotensin II–Induced Abdominal Aortic Aneurysms in C57BL/6 Mice—Brief Report. Arteriosclerosis, Thrombosis, and Vascular Biology, 2016, 36, 1753-1757.	1.1	80
31	Angiotensinogen Exerts Effects Independent of Angiotensin II. Arteriosclerosis, Thrombosis, and Vascular Biology, 2016, 36, 256-265.	1.1	71
32	Suppressing angiotensinogen synthesis attenuates kidney cyst formation in a <i>Pkd1</i> mouse model. FASEB Journal, 2016, 30, 370-379.	0.2	27
33	Antagonism of scavenger receptor CD36 by 5AÂpeptide prevents chronic kidney disease progression in mice independent of blood pressureÂregulation. Kidney International, 2016, 89, 809-822.	2.6	55
34	ApoC-III inhibits clearance of triglyceride-rich lipoproteins through LDL family receptors. Journal of Clinical Investigation, 2016, 126, 2855-2866.	3.9	186
35	CD40 Generation 2.5 Antisense Oligonucleotide Treatment Attenuates Doxorubicin-induced Nephropathy and Kidney Inflammation. Molecular Therapy - Nucleic Acids, 2015, 4, e265.	2.3	26
36	Antisense-mediated angiotensinogen inhibition slows polycystic kidney disease in mice with a targeted mutation in Pkd2. American Journal of Physiology - Renal Physiology, 2015, 308, F349-F357.	1.3	25

ADAM E MULLICK

#	Article	IF	CITATIONS
37	An mTOR anti-sense oligonucleotide decreases polycystic kidney disease in mice with a targeted mutation in Pkd2. Human Molecular Genetics, 2014, 23, 4919-4931.	1.4	29
38	CD36 coordinates NLRP3 inflammasome activation by facilitating intracellular nucleation of soluble ligands into particulate ligands in sterile inflammation. Nature Immunology, 2013, 14, 812-820.	7.0	746
39	Antisense Oligonucleotide Inhibition of Apolipoprotein C-III Reduces Plasma Triglycerides in Rodents, Nonhuman Primates, and Humans. Circulation Research, 2013, 112, 1479-1490.	2.0	326
40	Antisense oligonucleotide inhibition of cholesteryl ester transfer protein enhances RCT in hyperlipidemic, CETP transgenic, LDLr-/- mice. Journal of Lipid Research, 2013, 54, 2647-2657.	2.0	19
41	Comparison of the pharmacological profiles of murine antisense oligonucleotides targeting apolipoprotein B and microsomal triglyceride transfer protein. Journal of Lipid Research, 2013, 54, 602-614.	2.0	29
42	Antisense Oligonucleotide Lowers Plasma Levels of Apolipoprotein (a) and Lipoprotein (a) in Transgenic Mice. Journal of the American College of Cardiology, 2011, 57, 1611-1621.	1.2	113
43	Antisense oligonucleotide reduction of apoB-ameliorated atherosclerosis in LDL receptor-deficient mice. Journal of Lipid Research, 2011, 52, 885-896.	2.0	37
44	Antisense oligonucleotide suppression of serum amyloid A reduces amyloid deposition in mice with AA amyloidosis. Amyloid: the International Journal of Experimental and Clinical Investigation: the Official Journal of the International Society of Amyloidosis, 2011, 18, 136-146.	1.4	21
45	Increased endothelial expression of Toll-like receptor 2 at sites of disturbed blood flow exacerbates early atherogenic events. Journal of Experimental Medicine, 2008, 205, 373-383.	4.2	198
46	Antisense Oligonucleotide Directed to Human Apolipoprotein B-100 Reduces Lipoprotein(a) Levels and Oxidized Phospholipids on Human Apolipoprotein B-100 Particles in Lipoprotein(a) Transgenic Mice. Circulation, 2008, 118, 743-753.	1.6	143
47	Increased endothelial expression of Toll-like receptor 2 at sites of disturbed blood flow exacerbates early atherogenic events. Journal of Cell Biology, 2008, 180, i12-i12.	2.3	0
48	Apolipoprotein E3- and Nitric Oxide–Dependent Modulation of Endothelial Cell Inflammatory Responses. Arteriosclerosis, Thrombosis, and Vascular Biology, 2007, 27, 339-345.	1.1	9
49	Hyperhomocysteinemia increases arterial permeability and stiffness in mice. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2006, 291, R1349-R1354.	0.9	13
50	Toll-like Receptors and Atherosclerosis: Key Contributors in Disease and Health?. Immunologic Research, 2006, 34, 193-210.	1.3	64
51	Influence of Folate on Arterial Permeability and Stiffness in the Absence or Presence of Hyperhomocysteinemia. Arteriosclerosis, Thrombosis, and Vascular Biology, 2006, 26, 814-818.	1.1	25
52	Modulation of atherosclerosis in mice by Toll-like receptor 2. Journal of Clinical Investigation, 2005, 115, 3149-3156.	3.9	485
53	Hyperhomocysteinemia Evoked by Folate Depletion. Arteriosclerosis, Thrombosis, and Vascular Biology, 2002, 22, 772-780.	1.1	76
54	Apolipoprotein E and Lipoprotein Lipase Increase Triglyceride-Rich Particle Binding but Decrease Particle Penetration in Arterial Wall. Arteriosclerosis, Thrombosis, and Vascular Biology, 2002, 22, 2080-2085.	1.1	28

ADAM E MULLICK

#	Article	IF	CITATIONS
55	Reactive carbonyls from tobacco smoke increase arterial endothelial layer injury. American Journal of Physiology - Heart and Circulatory Physiology, 2002, 283, H591-H597.	1.5	38
56	Chronic estradiol treatment attenuates stiffening, glycoxidation, and permeability in rat carotid arteries. American Journal of Physiology - Heart and Circulatory Physiology, 2001, 281, H2204-H2210.	1.5	16
57	Modified LDL–Mediated Increases in Endothelial Layer Permeability Are Attenuated With 17β-Estradiol. Arteriosclerosis, Thrombosis, and Vascular Biology, 1999, 19, 854-861.	1.1	49
58	17β-Estradiol Reduces Glycoxidative Damage in the Artery Wall. Arteriosclerosis, Thrombosis, and Vascular Biology, 1999, 19, 840-846.	1.1	20
59	17β-Estradiol reduces tumor necrosis factor-α-mediated LDL accumulation in the artery wall. Journal of Lipid Research, 1999, 40, 387-396.	2.0	31