
Kyoung Heon Kim

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9384039/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Characterization of a Novel Acetogen Clostridium sp. JS66 for Production of Acids and Alcohols: Focusing on Hexanoic Acid Production from Syngas. Biotechnology and Bioprocess Engineering, 2022, 27, 89-98.	1.4	7
2	l-Fucose Synthesis Using a Halo- and Thermophilic l-Fucose Isomerase from Polyextremophilic Halothermothrix orenii. Applied Sciences (Switzerland), 2022, 12, 4029.	1.3	3
3	Multi-Step Enzymatic Production and Purification of 2-Keto-3-Deoxy-Galactonate from Red-Macroalgae-Derived Agarose. Marine Drugs, 2022, 20, 288.	2.2	0
4	Evaluation and optimization of quantitative analysis of cofactors from yeast by liquid chromatography/mass spectrometry. Analytica Chimica Acta, 2022, 1211, 339890.	2.6	1
5	Metabolic discrimination of synovial fluid between rheumatoid arthritis and osteoarthritis using gas chromatography/time-of-flight mass spectrometry. Metabolomics, 2022, 18, .	1.4	0
6	Non-Targeted Metabolomics Approach Revealed Significant Changes in Metabolic Pathways in Patients with Chronic Traumatic Encephalopathy. Biomedicines, 2022, 10, 1718.	1.4	2
7	Overproduction of Exopolysaccharide Colanic Acid by Escherichia coli by Strain Engineering and Media Optimization. Applied Biochemistry and Biotechnology, 2021, 193, 111-127.	1.4	12
8	Transcriptomic Changes Induced by Deletion of Transcriptional Regulator GCR2 on Pentose Sugar Metabolism in Saccharomyces cerevisiae. Frontiers in Bioengineering and Biotechnology, 2021, 9, 654177.	2.0	5
9	Dual α-1,4- and β-1,4-Glycosidase Activities by the Novel Carbohydrate-Binding Module in α- <scp>l</scp> -Fucosidase from <i>Vibrio</i> sp. Strain EJY3. Journal of Agricultural and Food Chemistry, 2021, 69, 3380-3389.	2.4	6
10	One-Pot Chemo-bioprocess of PET Depolymerization and Recycling Enabled by a Biocompatible Catalyst, Betaine. ACS Catalysis, 2021, 11, 3996-4008.	5.5	58
11	In Vitro Prebiotic and Anti-Colon Cancer Activities of Agar-Derived Sugars from Red Seaweeds. Marine Drugs, 2021, 19, 213.	2.2	18
12	Characterization of Neoagarooligosaccharide Hydrolase BpGH117 from a Human Gut Bacterium Bacteroides plebeius. Marine Drugs, 2021, 19, 271.	2.2	7
13	Metabolic and enzymatic elucidation of cooperative degradation of red seaweed agarose by two human gut bacteria. Scientific Reports, 2021, 11, 13955.	1.6	8
14	Antidiabetic Effect of Noodles Containing Fermented Lettuce Extracts. Metabolites, 2021, 11, 520.	1.3	10
15	Production of neoagarooligosaccharides by probiotic yeast Saccharomyces cerevisiae var. boulardii engineered as a microbial cell factory. Microbial Cell Factories, 2021, 20, 160.	1.9	13
16	Increased Production of Colanic Acid by an Engineered Escherichia coli Strain, Mediated by Genetic and Environmental Perturbations. Applied Biochemistry and Biotechnology, 2021, 193, 4083-4096.	1.4	5
17	Fast filtration with a vacuum manifold system as a rapid and robust metabolome sampling method for Saccharomyces cerevisiae. Process Biochemistry, 2021, 110, 195-200.	1.8	2
18	Characterization of BpGH16A of Bacteroides plebeius, a key enzyme initiating the depolymerization of agarose in the human gut. Applied Microbiology and Biotechnology, 2021, 105, 617-625.	1.7	9

#	Article	IF	CITATIONS
19	Characterization of an Antibacterial Agent Targeting Ferrous Iron Transport Protein FeoB against <i>Staphylococcus aureus</i> and Gram-Positive Bacteria. ACS Chemical Biology, 2021, 16, 136-149.	1.6	9
20	Comparative metabolite profiling of wild type and thermo-tolerant mutant of Saccharomyces cerevisiae. Process Biochemistry, 2021, 111, 62-68.	1.8	2
21	Isomer-Specific Monitoring of Sialylated N-Glycans Reveals Association of α2,3-Linked Sialic Acid Epitope With Behcet's Disease. Frontiers in Molecular Biosciences, 2021, 8, 778851.	1.6	3
22	Activation of ectopic olfactory receptor 544 induces GLP-1 secretion and regulates gut inflammation. Gut Microbes, 2021, 13, 1987782.	4.3	17
23	Long-Living Budding Yeast Cell Subpopulation Induced by Ethanol/Acetate and Respiration. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2020, 75, 1448-1456.	1.7	6
24	Redirection of the Glycolytic Flux Enhances Isoprenoid Production in <i>Saccharomyces cerevisiae</i> . Biotechnology Journal, 2020, 15, e1900173.	1.8	24
25	Intracellular metabolite profiling and the evaluation of metabolite extraction solvents for Clostridium carboxidivorans fermenting carbon monoxide. Process Biochemistry, 2020, 89, 20-28.	1.8	13
26	Enhanced 2′-Fucosyllactose production by engineered Saccharomyces cerevisiae using xylose as a co-substrate. Metabolic Engineering, 2020, 62, 322-329.	3.6	29
27	Zmo0994, a novel LEA-like protein from Zymomonas mobilis, increases multi-abiotic stress tolerance in Escherichia coli. Biotechnology for Biofuels, 2020, 13, 151.	6.2	7
28	Thermophilic l-fucose isomerase from Thermanaeromonas toyohensis for l-fucose synthesis from l-fuculose. Process Biochemistry, 2020, 96, 131-137.	1.8	5
29	Isobutanol production from empty fruit bunches. Renewable Energy, 2020, 157, 1124-1130.	4.3	6
30	Systematic re-evaluation of the long-used standard protocol of urease-dependent metabolome sample preparation. PLoS ONE, 2020, 15, e0230072.	1.1	6
31	Biological upgrading of 3,6-anhydro- <scp>l</scp> -galactose from agarose to a new platform chemical. Green Chemistry, 2020, 22, 1776-1785.	4.6	15
32	Dual Agarolytic Pathways in a Marine Bacterium, <i>Vibrio</i> sp. Strain EJY3: Molecular and Enzymatic Verification. Applied and Environmental Microbiology, 2020, 86, .	1.4	22
33	Biochemical characterization of bacterial FeoBs: A perspective on nucleotide specificity. Archives of Biochemistry and Biophysics, 2020, 685, 108350.	1.4	16
34	Metabolomic Elucidation of the Effect of Sucrose on the Secondary Metabolite Profiles in <i>Melissa officinalis</i> by Ultraperformance Liquid Chromatography–Mass Spectrometry. ACS Omega, 2020, 5, 33186-33195.	1.6	10
35	Variation in the synovial fluid metabolome according to disease activity of rheumatoid arthritis. Clinical and Experimental Rheumatology, 2020, 38, 500-507.	0.4	3
36	Metabolomic Analysis Identifies Alterations of Amino Acid Metabolome Signatures in the Postmortem Brain of Alzheimer's Disease. Experimental Neurobiology, 2019, 28, 376-389.	0.7	26

#	Article	IF	CITATIONS
37	3,6-Anhydro-L-galactose increases hyaluronic acid production via the EGFR and AMPKα signaling pathway in HaCaT keratinocytes. Journal of Dermatological Science, 2019, 96, 90-98.	1.0	15
38	Biological Valorization of Poly(ethylene terephthalate) Monomers for Upcycling Waste PET. ACS Sustainable Chemistry and Engineering, 2019, 7, 19396-19406.	3.2	141
39	Comprehensive genomic and transcriptomic analysis of polycyclic aromatic hydrocarbon degradation by a mycoremediation fungus, Dentipellis sp. KUC8613. Applied Microbiology and Biotechnology, 2019, 103, 8145-8155.	1.7	41
40	Deletion of PHO13 improves aerobic l-arabinose fermentation in engineered Saccharomyces cerevisiae. Journal of Industrial Microbiology and Biotechnology, 2019, 46, 1725-1731.	1.4	12
41	Metabolomic and Transcriptomic Analyses of Escherichia coli for Efficient Fermentation of L-Fucose. Marine Drugs, 2019, 17, 82.	2.2	19
42	Biosynthetic Routes for Producing Various Fucosyl-Oligosaccharides. ACS Synthetic Biology, 2019, 8, 415-424.	1.9	8
43	Integrative metabolomics reveals unique metabolic traits in Guillain-Barré Syndrome and its variants. Scientific Reports, 2019, 9, 1077.	1.6	16
44	Anticariogenic Activity of Agarobiose and Agarooligosaccharides Derived from Red Macroalgae. Journal of Agricultural and Food Chemistry, 2019, 67, 7297-7303.	2.4	17
45	Cellulase recycling in high-solids enzymatic hydrolysis of pretreated empty fruit bunches. Biotechnology for Biofuels, 2019, 12, 138.	6.2	35
46	Metabolite profile changes and increased antioxidative and antiinflammatory activities of mixed vegetables after fermentation by Lactobacillus plantarum. PLoS ONE, 2019, 14, e0217180.	1.1	19
47	Comparative global metabolite profiling of xylose-fermenting Saccharomyces cerevisiae SR8 and Scheffersomyces stipitis. Applied Microbiology and Biotechnology, 2019, 103, 5435-5446.	1.7	25
48	Pretreatment and enzymatic saccharification of oak at high solids loadings to obtain high titers and high yields of sugars. Bioresource Technology, 2019, 284, 391-397.	4.8	26
49	Enzymatic synthesis of l-fucose from l-fuculose using a fucose isomerase from Raoultella sp. and the biochemical and structural analyses of the enzyme. Biotechnology for Biofuels, 2019, 12, 282.	6.2	13
50	Largely enhanced bioethanol production through the combined use of lignin-modified sugarcane and xylose fermenting yeast strain. Bioresource Technology, 2018, 256, 312-320.	4.8	35
51	Metabolomic elucidation of the effects of media and carbon sources on fatty acid production by Yarrowia lipolytica. Journal of Biotechnology, 2018, 272-273, 7-13.	1.9	10
52	Metabolomic response of a marine bacterium to 3,6-anhydro- l -galactose, the rare sugar from red macroalgae, as the sole carbon source. Journal of Biotechnology, 2018, 270, 12-20.	1.9	2
53	Caloric Restriction and Rapamycin Differentially Alter Energy Metabolism in Yeast. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2018, 73, 29-38.	1.7	25
54	Potential metabolomic biomarkers for reliable diagnosis of Behcet's disease using gas chromatography/ time-of-flight-mass spectrometry. Joint Bone Spine, 2018, 85, 337-343.	0.8	18

#	Article	IF	CITATIONS
55	High substrate specificity of 3,6-anhydro- l -galactose dehydrogenase indicates its essentiality in the agar catabolism of a marine bacterium. Process Biochemistry, 2018, 64, 130-135.	1.8	7
56	Optimization of hexanoic acid production in recombinant Escherichia coli by precise flux rebalancing. Bioresource Technology, 2018, 247, 1253-1257.	4.8	21
57	Beneficial Effects of Marine Algae-Derived Carbohydrates for Skin Health. Marine Drugs, 2018, 16, 459.	2.2	54
58	Biosynthesis of a Functional Human Milk Oligosaccharide, 2′-Fucosyllactose, and <scp>l</scp> -Fucose Using Engineered <i>Saccharomyces cerevisiae</i> . ACS Synthetic Biology, 2018, 7, 2529-2536.	1.9	35
59	Novel Two-Step Process Utilizing a Single Enzyme for the Production of High-Titer 3,6-Anhydro- <scp>l</scp> -galactose from Agarose Derived from Red Macroalgae. Journal of Agricultural and Food Chemistry, 2018, 66, 12249-12256.	2.4	18
60	Metabolomic elucidation of recovery of Melissa officinalis from UV-B irradiation stress. Industrial Crops and Products, 2018, 121, 428-433.	2.5	7
61	Metabolic engineering of Saccharomyces cerevisiae by using the CRISPR-Cas9 system for enhanced fatty acid production. Process Biochemistry, 2018, 73, 23-28.	1.8	9
62	Promiscuous activities of heterologous enzymes lead to unintended metabolic rerouting in Saccharomyces cerevisiae engineered to assimilate various sugars from renewable biomass. Biotechnology for Biofuels, 2018, 11, 140.	6.2	17
63	Production of a human milk oligosaccharide 2′-fucosyllactose by metabolically engineered Saccharomyces cerevisiae. Microbial Cell Factories, 2018, 17, 101.	1.9	73
64	A novel β-glucosidase from Saccharophagus degradans 2-40T for the efficient hydrolysis of laminarin from brown macroalgae. Biotechnology for Biofuels, 2018, 11, 64.	6.2	21
65	Multi-omic characterization of laboratory-evolved Saccharomyces cerevisiae HJ7-14 with high ability of algae-based ethanol production. Applied Microbiology and Biotechnology, 2018, 102, 8989-9002.	1.7	5
66	Effect of 3,6â€anhydroâ€ <scp>l</scp> â€galactose on αâ€melanocyte stimulating hormoneâ€induced melanogenesis in human melanocytes and a skinâ€equivalent model. Journal of Cellular Biochemistry, 2018, 119, 7643-7656.	1.2	13
67	Comparative assessment of Graves' disease and main extrathyroidal manifestation, Graves' ophthalmopathy, by non-targeted metabolite profiling of blood and orbital tissue. Scientific Reports, 2018, 8, 9262.	1.6	24
68	Global profiling of metabolic response of Caenorhabditis elegans against Escherichia coli O157:H7. Process Biochemistry, 2017, 53, 36-43.	1.8	5
69	Intracellular metabolite profiling of <i>Saccharomyces cerevisiae</i> evolved under furfural. Microbial Biotechnology, 2017, 10, 395-404.	2.0	25
70	Fed-Batch Enzymatic Saccharification of High Solids Pretreated Lignocellulose for Obtaining High Titers and High Yields of Glucose. Applied Biochemistry and Biotechnology, 2017, 182, 1108-1120.	1.4	37
71	Cellotriose-hydrolyzing activity conferred by truncating the carbohydrate-binding modules of Cel5 from Hahella chejuensis. Bioprocess and Biosystems Engineering, 2017, 40, 241-249.	1.7	5
72	Type-dependent action modes of TtAA9E and TaAA9A acting on cellulose and differently pretreated lignocellulosic substrates. Biotechnology for Biofuels, 2017, 10, 46.	6.2	30

#	Article	IF	CITATIONS
73	The water channel protein aquaporin 1 regulates cellular metabolism and competitive fitness in a global fungal pathogen <scp><i>C</i></scp> <i>ryptococcus neoformans</i> . Environmental Microbiology Reports, 2017, 9, 268-278.	1.0	8
74	Enhanced enzymatic hydrolysis of hydrothermally pretreated empty fruit bunches at high solids loadings by the synergism of hemicellulase and polyethylene glycol. Process Biochemistry, 2017, 58, 211-216.	1.8	21
75	Effects of minimal media vs. complex media on the metabolite profiles of Escherichia coli and Saccharomyces cerevisiae. Process Biochemistry, 2017, 57, 64-71.	1.8	31
76	Rapid and robust enzymatic sensing and quantitation of 3,6-Anhydro-L-galactose in a heterogeneous sugar mixture. Carbohydrate Research, 2017, 446-447, 13-18.	1.1	3
77	Exploratory metabolomics of biomarker identification for the internet gaming disorder in young Korean males. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2017, 1057, 24-31.	1.2	12
78	Continuous supply of glucose and glycerol enhances biotransformation of ricinoleic acid to (E) Tj ETQq0 0 0 rgBT 253, 34-39.	/Overlock 1.9	10 Tf 50 54 5
79	Pure enzyme cocktails tailored for the saccharification of sugarcane bagasse pretreated by using different methods. Process Biochemistry, 2017, 57, 167-174.	1.8	18
80	Efficacy of pretreating oil palm fronds with an acid—base mixture catalyst. Bioresource Technology, 2017, 236, 234-237.	4.8	7
81	Expression of a mutated SPT15 gene in Saccharomyces cerevisiae enhances both cell growth and ethanol production in microaerobic batch, fed-batch, and simultaneous saccharification and fermentations. Applied Microbiology and Biotechnology, 2017, 101, 3567-3575.	1.7	13
82	Production of high-value β-1,3-glucooligosaccharides by microwave-assisted hydrothermal hydrolysis of curdlan. Process Biochemistry, 2017, 52, 233-237.	1.8	27
83	Physiological and Metabolomic Analysis of <i>Issatchenkia orientalis</i> MTY1 With Multiple Tolerance for Cellulosic Bioethanol Production. Biotechnology Journal, 2017, 12, 1700110.	1.8	12
84	Crystal structure analysis of 3,6-anhydro- l -galactonate cycloisomerase suggests emergence of novel substrate specificity in the enolase superfamily. Biochemical and Biophysical Research Communications, 2017, 491, 217-222.	1.0	1
85	Urinary profiling of tryptophan and its related metabolites in patients with metabolic syndrome by liquid chromatography-electrospray ionization/mass spectrometry. Analytical and Bioanalytical Chemistry, 2017, 409, 5501-5512.	1.9	26
86	Current knowledge on agarolytic enzymes and the industrial potential of agar-derived sugars. Applied Microbiology and Biotechnology, 2017, 101, 5581-5589.	1.7	64
87	3,6-Anhydro-l-galactose, a rare sugar from agar, a new anticariogenic sugar to replace xylitol. Food Chemistry, 2017, 221, 976-983.	4.2	35
88	The first bacterial β-1,6-endoglucanase from Saccharophagus degradans 2-40T for the hydrolysis of pustulan and laminarin. Applied Microbiology and Biotechnology, 2017, 101, 197-204.	1.7	15
89	Metabolite profiles of synovial fluid change with the radiographic severity of knee osteoarthritis. Joint Bone Spine, 2017, 84, 605-610.	0.8	63
90	Enzymatic liquefaction of agarose above the sol–gel transition temperature using a thermostable endo-type β-agarase, Aga16B. Applied Microbiology and Biotechnology, 2017, 101, 1111-1120.	1.7	38

#	Article	IF	CITATIONS
91	Urinary Metabolomic Profiling to Identify Potential Biomarkers for the Diagnosis of Behcet's Disease by Gas Chromatography/Time-of-Flightâ^'Mass Spectrometry. International Journal of Molecular Sciences, 2017, 18, 2309.	1.8	19
92	Different Levels of Skin Whitening Activity among 3,6-Anhydro-l-galactose, Agarooligosaccharides, and Neoagarooligosaccharides. Marine Drugs, 2017, 15, 321.	2.2	68
93	3,6-Anhydro-L-galactonate cycloisomerase fromVibriosp. strain EJY3: crystallization and X-ray crystallographic analysis. Acta Crystallographica Section F, Structural Biology Communications, 2017, 73, 511-514.	0.4	3
94	Evaluation of commercial cellulase preparations for the efficient hydrolysis of hydrothermally pretreated empty fruit bunches. BioResources, 2017, 12, 7834-7840.	0.5	25
95	Highly Time-Resolved Metabolic Reprogramming toward Differential Levels of Phosphate in Chlamydomonas reinhardtii. Journal of Microbiology and Biotechnology, 2017, 27, 1150-1156.	0.9	2
96	Effective Thermal Inactivation of the Spores of Bacillus cereus Biofilms Using Microwave. Journal of Microbiology and Biotechnology, 2017, 27, 1209-1215.	0.9	21
97	Elucidation of ethanol tolerance mechanisms in <i>Saccharomyces cerevisiae</i> by global metabolite profiling. Biotechnology Journal, 2016, 11, 1221-1229.	1.8	26
98	Enhanced production of 2,3-butanediol by engineered Saccharomyces cerevisiae through fine-tuning of pyruvate decarboxylase and NADH oxidase activities. Biotechnology for Biofuels, 2016, 9, 265.	6.2	48
99	Systematic biomarker discovery and coordinative validation for different primary nephrotic syndromes using gas chromatography–mass spectrometry. Journal of Chromatography A, 2016, 1453, 105-115.	1.8	27
100	Ex situ product recovery for enhanced butanol production by Clostridium beijerinckii. Bioprocess and Biosystems Engineering, 2016, 39, 695-702.	1.7	4
101	A Novel Glycoside Hydrolase Family 5 β-1,3-1,6-Endoglucanase from Saccharophagus degradans 2-40 ^T and Its Transglycosylase Activity. Applied and Environmental Microbiology, 2016, 82, 4340-4349.	1.4	23
102	Validation of the metabolic pathway of the alginate-derived monomer in Saccharophagus degradans 2-40 T by gas chromatography–mass spectrometry. Process Biochemistry, 2016, 51, 1374-1379.	1.8	6
103	Effective production of fermentable sugars from brown macroalgae biomass. Applied Microbiology and Biotechnology, 2016, 100, 9439-9450.	1.7	24
104	Biomass, strain engineering, and fermentation processes for butanol production by solventogenic clostridia. Applied Microbiology and Biotechnology, 2016, 100, 8255-8271.	1.7	44
105	Enhanced butanol fermentation using metabolically engineered Clostridium acetobutylicum with ex situ recovery of butanol. Bioresource Technology, 2016, 218, 909-917.	4.8	22
106	Synergism of an auxiliary activity 9 (AA9) from Chaetomium globosum with xylanase on the hydrolysis of xylan and lignocellulose. Process Biochemistry, 2016, 51, 1445-1451.	1.8	32
107	Distinctive metabolomic responses of Chlamydomonas reinhardtii to the chemical elicitation by methyl jasmonate and salicylic acid. Process Biochemistry, 2016, 51, 1147-1154.	1.8	27
108	GC/TOF-MS-based metabolomic profiling in cultured fibroblast-like synoviocytes from rheumatoid arthritis. Joint Bone Spine, 2016, 83, 707-713.	0.8	63

#	Article	IF	CITATIONS
109	Efficacy of acidic pretreatment for the saccharification and fermentation of alginate from brown macroalgae. Bioprocess and Biosystems Engineering, 2016, 39, 959-966.	1.7	12
110	Characterization of the biochemical properties of recombinant Xyn10C from a marine bacterium, Saccharophagus degradans 2-40. Bioprocess and Biosystems Engineering, 2016, 39, 677-684.	1.7	11
111	Ethanol production from lignocellulosic hydrolysates using engineered Saccharomyces cerevisiae harboring xylose isomerase-based pathway. Bioresource Technology, 2016, 209, 290-296.	4.8	91
112	PHO13 deletion-induced transcriptional activation prevents sedoheptulose accumulation during xylose metabolism in engineered Saccharomyces cerevisiae. Metabolic Engineering, 2016, 34, 88-96.	3.6	74
113	Food metabolomics: from farm to human. Current Opinion in Biotechnology, 2016, 37, 16-23.	3.3	98
114	Pretreatment and saccharification of red macroalgae to produce fermentable sugars. Bioresource Technology, 2016, 199, 311-318.	4.8	87
115	Contribution of Drosophila TRPA1 to Metabolism. PLoS ONE, 2016, 11, e0152935.	1.1	11
116	Disease Type- and Status-Specific Alteration of CSF Metabolome Coordinated with Clinical Parameters in Inflammatory Demyelinating Diseases of CNS. PLoS ONE, 2016, 11, e0166277.	1.1	24
117	Single Crossover-Mediated Markerless Genome Engineering in Clostridium acetobutylicum. Journal of Microbiology and Biotechnology, 2016, 26, 725-729.	0.9	10
118	A Comparative Metabolomic Evaluation of Behcet's Disease with Arthritis and Seronegative Arthritis Using Synovial Fluid. PLoS ONE, 2015, 10, e0135856.	1.1	18
119	Metabolomic Elucidation of the Effects of Curcumin on Fibroblast-Like Synoviocytes in Rheumatoid Arthritis. PLoS ONE, 2015, 10, e0145539.	1.1	37
120	Whole slurry saccharification and fermentation of maleic acid-pretreated rice straw for ethanol production. Bioprocess and Biosystems Engineering, 2015, 38, 1639-1644.	1.7	21
121	Red macroalgae as a sustainable resource for bio-based products. Trends in Biotechnology, 2015, 33, 247-249.	4.9	68
122	Crystal structure analysis of a bacterial aryl acylamidase belonging to the amidase signature enzyme family. Biochemical and Biophysical Research Communications, 2015, 467, 268-274.	1.0	23
123	Engineering Escherichia coli for the production of adipic acid through the reversed Î ² -oxidation pathway. Process Biochemistry, 2015, 50, 2066-2071.	1.8	30
124	Mimicking the Fenton reaction-induced wood decay by fungi for pretreatment of lignocellulose. Bioresource Technology, 2015, 179, 467-472.	4.8	75
125	Acidic Pretreatment. , 2015, , 27-50.		44
126	Customized optimization of cellulase mixtures for differently pretreated rice straw. Bioprocess and Biosystems Engineering, 2015, 38, 929-937.	1.7	24

#	Article	IF	CITATIONS
127	Whole cell bioconversion of vitamin D3 to calcitriol using Pseudonocardia sp. KCTC 1029BP. Bioprocess and Biosystems Engineering, 2015, 38, 1281-1290.	1.7	12
128	Effective inactivation of Candida albicans biofilms by using supercritical carbon dioxide. Bioprocess and Biosystems Engineering, 2015, 38, 1731-1737.	1.7	4
129	Production of (S)-3-hydroxybutyrate by metabolically engineered Saccharomyces cerevisiae. Journal of Biotechnology, 2015, 209, 23-30.	1.9	10
130	Genome sequence of a white rot fungus Schizopora paradoxa KUC8140 for wood decay and mycoremediation. Journal of Biotechnology, 2015, 211, 42-43.	1.9	21
131	Evolutionary engineering of Saccharomyces cerevisiae for efficient conversion of red algal biosugars to bioethanol. Bioresource Technology, 2015, 191, 445-451.	4.8	29
132	Compounds inhibiting the bioconversion of hydrothermally pretreated lignocellulose. Applied Microbiology and Biotechnology, 2015, 99, 4201-4212.	1.7	106
133	Optimization of synergism of a recombinant auxiliary activity 9 from Chaetomium globosum with cellulase in cellulose hydrolysis. Applied Microbiology and Biotechnology, 2015, 99, 8537-8547.	1.7	54
134	Deletion of <i>PHO13</i> , Encoding Haloacid Dehalogenase Type IIA Phosphatase, Results in Upregulation of the Pentose Phosphate Pathway in Saccharomyces cerevisiae. Applied and Environmental Microbiology, 2015, 81, 1601-1609.	1.4	60
135	Tolerance to acetic acid is improved by mutations of the <scp>TATA</scp> â€binding protein gene. Environmental Microbiology, 2015, 17, 656-669.	1.8	18
136	Bioconversion of vitamin D3 to calcifediol by using resting cells of Pseudonocardia sp Biotechnology Letters, 2015, 37, 1895-1904.	1.1	12
137	The novel catabolic pathway of 3,6â€anhydroâ€ <scp>L</scp> â€galactose, the main component of red macroalgae, in a marine bacterium. Environmental Microbiology, 2015, 17, 1677-1688.	1.8	106
138	Combination of high solids loading pretreatment and ethanol fermentation of whole slurry of pretreated rice straw to obtain high ethanol titers and yields. Bioresource Technology, 2015, 198, 861-866.	4.8	23
139	Ex situ product recovery and strain engineering of Clostridium acetobutylicum for enhanced production of butanol. Process Biochemistry, 2015, 50, 1683-1691.	1.8	21
140	Saccharification of agar using hydrothermal pretreatment and enzymes supplemented with agarolytic β-galactosidase. Process Biochemistry, 2015, 50, 1629-1633.	1.8	28
141	A New Shuttle Plasmid That Stably Replicates in Clostridium acetobutylicum. Journal of Microbiology and Biotechnology, 2015, 25, 1702-1708.	0.9	4
142	Global Metabolite Profiling of Synovial Fluid for the Specific Diagnosis of Rheumatoid Arthritis from Other Inflammatory Arthritis. PLoS ONE, 2014, 9, e97501.	1.1	124
143	Atmospheric vs. anaerobic processing of metabolome samples for the metabolite profiling of a strict anaerobic bacterium, <i>Clostridium acetobutylicum</i> . Biotechnology and Bioengineering, 2014, 111, 2528-2536.	1.7	14
144	Optimization of sono-assisted dilute sulfuric acid process for simultaneous pretreatment and saccharification of rice straw. International Journal of Environmental Science and Technology, 2014, 11, 543-550.	1.8	26

#	Article	IF	CITATIONS
145	Effects of signal sequences and folding accessory proteins on extracellular expression of carboxypeptidase Y in recombinant Saccharomyces cerevisiae. Bioprocess and Biosystems Engineering, 2014, 37, 1065-1071.	1.7	6
146	Whole slurry fermentation of maleic acid-pretreated oil palm empty fruit bunches for ethanol production not necessitating a detoxification process. Bioprocess and Biosystems Engineering, 2014, 37, 659-665.	1.7	27
147	Optimal production of 4-deoxy-l-erythro-5-hexoseulose uronic acid from alginate for brown macro algae saccharification by combining endo- and exo-type alginate lyases. Bioprocess and Biosystems Engineering, 2014, 37, 2105-2111.	1.7	41
148	One-pot pretreatment, saccharification and ethanol fermentation of lignocellulose based on acid–base mixture pretreatment. RSC Advances, 2014, 4, 55318-55327.	1.7	26
149	Synergistic proteins for the enhanced enzymatic hydrolysis of cellulose by cellulase. Applied Microbiology and Biotechnology, 2014, 98, 8469-8480.	1.7	92
150	A Novel Agarolytic β-Galactosidase Acts on Agarooligosaccharides for Complete Hydrolysis of Agarose into Monomers. Applied and Environmental Microbiology, 2014, 80, 5965-5973.	1.4	78
151	Feasibility test of utilizing Saccharophagus degradans 2-40T as the source of crude enzyme for the saccharification of lignocellulose. Bioprocess and Biosystems Engineering, 2014, 37, 707-710.	1.7	6
152	Linalool is a PPARα ligand that reduces plasma TG levels and rewires the hepatic transcriptome and plasma metabolome. Journal of Lipid Research, 2014, 55, 1098-1110.	2.0	38
153	Metabolic engineering of Corynebacterium glutamicum to produce GDP-l-fucose from glucose and mannose. Bioprocess and Biosystems Engineering, 2013, 36, 749-756.	1.7	30
154	Addition of ethanol to supercritical carbon dioxide enhances the inactivation of bacterial spores in the biofilm of Bacillus cereus. International Journal of Food Microbiology, 2013, 166, 207-212.	2.1	32
155	Dilute acid pretreatment of lignocellulose for whole slurry ethanol fermentation. Bioresource Technology, 2013, 132, 109-114.	4.8	122
156	High temperature and low acid pretreatment and agarase treatment of agarose for the production of sugar and ethanol from red seaweed biomass. Bioresource Technology, 2013, 136, 582-587.	4.8	55
157	Enzymatic production of 3,6-anhydro-l-galactose from agarose and its purification and in vitro skin whitening and anti-inflammatory activities. Applied Microbiology and Biotechnology, 2013, 97, 2961-2970.	1.7	96
158	Effect of Supercritical <scp><scp>CO₂</scp> </scp> Modified with Water Cosolvent on the Sterilization of Fungal Sporeâ€Contaminated Barley Seeds and the Germination of Barley Seeds. Journal of Food Safety, 2013, 33, 94-101.	1.1	11
159	An expansin from the marine bacterium Hahella chejuensis acts synergistically with xylanase and enhances xylan hydrolysis. Bioresource Technology, 2013, 149, 516-519.	4.8	20
160	Generation of electricity from FeCl3 pretreatment of rice straw using a fuel cell system. Bioresource Technology, 2013, 135, 635-639.	4.8	13
161	Evaluation of a transgenic poplar as a potential biomass crop for biofuel production. Bioresource Technology, 2013, 129, 639-641.	4.8	19
162	Binding characteristics of a bacterial expansin (BsEXLX1) for various types of pretreated lignocellulose. Applied Microbiology and Biotechnology, 2013, 97, 5381-5388.	1.7	39

#	Article	IF	CITATIONS
163	Evaluation and Optimization of Metabolome Sample Preparation Methods for Saccharomyces cerevisiae. Analytical Chemistry, 2013, 85, 2169-2176.	3.2	133
164	Characteristics of the binding of a bacterial expansin (<i>Bs</i> EXLX1) to microcrystalline cellulose. Biotechnology and Bioengineering, 2013, 110, 401-407.	1.7	26
165	Enhancement of Supercritical CO2 Inactivation of Spores of Penicilliumoxalicum by Ethanol Cosolvent. Journal of Microbiology and Biotechnology, 2013, 23, 833-836.	0.9	6
166	Effects of Supercritical Carbon Dioxide Treatment on Meat Quality and Sensory Evaluation in Soy Sauce and Hot-pepper Paste Marinated Pork. Korean Journal for Food Science of Animal Resources, 2013, 33, 581-586.	1.5	1
167	Functional Cell Surface Display and Controlled Secretion of Diverse Agarolytic Enzymes by Escherichia coli with a Novel Ligation-Independent Cloning Vector Based on the Autotransporter YfaL. Applied and Environmental Microbiology, 2012, 78, 3051-3058.	1.4	16
168	Genome Sequence of Vibrio sp. Strain EJY3, an Agarolytic Marine Bacterium Metabolizing 3,6-Anhydro-L-Galactose as a Sole Carbon Source. Journal of Bacteriology, 2012, 194, 2773-2774.	1.0	34
169	Aqueous ammonia pretreatment, saccharification, and fermentation evaluation of oil palm fronds for ethanol production. Bioprocess and Biosystems Engineering, 2012, 35, 1497-1503.	1.7	32
170	Melissa officinalisEssential Oil Reduces Plasma Triglycerides in Human Apolipoprotein E2 Transgenic Mice by Inhibiting Sterol Regulatory Element-Binding Protein-1c–Dependent Fatty Acid Synthesis3. Journal of Nutrition, 2012, 142, 432-440.	1.3	39
171	Extraction behaviors of caffeine and chlorophylls in supercritical decaffeination of green tea leaves. LWT - Food Science and Technology, 2012, 45, 73-78.	2.5	30
172	Inactivation of Alternaria brassicicola spores by supercritical carbon dioxide with ethanol entrainer. Journal of Microbiological Methods, 2012, 88, 185-187.	0.7	13
173	Pharmacogenetics Meets Metabolomics: Discovery of Tryptophan as a New Endogenous OCT2 Substrate Related to Metformin Disposition. PLoS ONE, 2012, 7, e36637.	1.1	43
174	Clobal profiling of ultraviolet-induced metabolic disruption in Melissa officinalis by using gas chromatography-mass spectrometry. Analytical and Bioanalytical Chemistry, 2012, 404, 553-562.	1.9	24
175	Characterization of a recombinant endo-type alginate lyase (Alg7D) from Saccharophagus degradans. Biotechnology Letters, 2012, 34, 1087-1092.	1.1	60
176	Disinfection of wheat grains contaminated with Penicillium oxalicum spores by a supercritical carbon dioxide-water cosolvent system. International Journal of Food Microbiology, 2012, 156, 239-244.	2.1	13
177	Effects of overexpression of acetaldehyde dehydrogenase 6 and acetyl-CoA synthetase 1 on xylitol production in recombinant Saccharomyces cerevisiae. Biocatalysis and Agricultural Biotechnology, 2012, 1, 15-19.	1.5	25
178	The complete enzymatic saccharification of agarose and its application to simultaneous saccharification and fermentation of agarose for ethanol production. Bioresource Technology, 2012, 107, 301-306.	4.8	72
179	Depolymerization of alginate into a monomeric sugar acid using Alg17C, an exo-oligoalginate lyase cloned from Saccharophagus degradans 2-40. Applied Microbiology and Biotechnology, 2012, 93, 2233-2239.	1.7	90
180	Production of p-acetaminophenol by whole-cell catalysis using Escherichia coli overexpressing bacterial aryl acylamidase. Biotechnology Letters, 2012, 34, 677-682.	1.1	4

#	Article	IF	CITATIONS
181	Genome Sequence of the Abyssomicin- and Proximicin-Producing Marine Actinomycete Verrucosispora maris AB-18-032. Journal of Bacteriology, 2011, 193, 3391-3392.	1.0	24
182	Crystal structure of a key enzyme in the agarolytic pathway, α-neoagarobiose hydrolase from Saccharophagus degradans 2–40. Biochemical and Biophysical Research Communications, 2011, 412, 238-244.	1.0	76
183	SUPERCRITICAL CARBON DIOXIDE AS A POTENTIAL INTERVENTION FOR GROUND PORK DECONTAMINATION. Journal of Food Safety, 2011, 31, 48-53.	1.1	15
184	APPLICATION OF SUPERCRITICAL CARBON DIOXIDE FOR MICROORGANISM REDUCTIONS IN FRESH PORK. Journal of Food Safety, 2011, 31, 511-517.	1.1	16
185	Simultaneous Enhancement of Free Isoflavone Content and Antioxidant Potential of Soybean by Fermentation with <i>Aspergillus oryzae</i> . Journal of Food Science, 2011, 76, H194-200.	1.5	23
186	Linalool reduces the expression of 3-hydroxy-3-methylglutaryl CoA reductase via sterol regulatory element binding protein-2- and ubiquitin-dependent mechanisms. FEBS Letters, 2011, 585, 3289-3296.	1.3	45
187	Aqueous ammonia pretreatment of oil palm empty fruit bunches for ethanol production. Bioresource Technology, 2011, 102, 9806-9809.	4.8	74
188	Dual inhibitions of lemon balm (Melissa officinalis) ethanolic extract on melanogenesis in B16-F1 murine melanocytes: Inhibition of tyrosinase activity and its gene expression. Food Science and Biotechnology, 2011, 20, 1051-1059.	1.2	13
189	Metabolite profiling of sucrose effect on the metabolism of Melissa officinalis by gas chromatography-mass spectrometry. Analytical and Bioanalytical Chemistry, 2011, 399, 3519-3528.	1.9	13
190	Ethanol production from oil palm trunks treated with aqueous ammonia and cellulase. Bioresource Technology, 2011, 102, 7307-7312.	4.8	52
191	Production of 3,6-anhydro-l-galactose from agarose by agarolytic enzymes of Saccharophagus degradans 2-40. Process Biochemistry, 2011, 46, 88-93.	1.8	44
192	Complete Genome Sequencing of Lactobacillus acidophilus 30SC, Isolated from Swine Intestine. Journal of Bacteriology, 2011, 193, 2882-2883.	1.0	18
193	Overexpression and molecular characterization of Aga50D from Saccharophagus degradans 2-40: an exo-type β-agarase producing neoagarobiose. Applied Microbiology and Biotechnology, 2010, 86, 227-234.	1.7	127
194	An Expansin-Like Protein from Hahella chejuensis Binds Cellulose and Enhances Cellulase Activity. Molecules and Cells, 2010, 29, 379-386.	1.0	59
195	Molecular Characterization of a Novel Bacterial Aryl Acylamidase Belonging to the Amidase Signature Enzyme Family. Molecules and Cells, 2010, 29, 485-492.	1.0	23
196	Enhanced drought tolerance in Arabidopsis via genetic manipulation aimed at the reduction of glucosamine-induced ROS generation. Plant Molecular Biology, 2010, 74, 493-502.	2.0	27
197	Clobal metabolic profiling of plant cell wall polysaccharide degradation by <i>Saccharophagus degradans</i> . Biotechnology and Bioengineering, 2010, 105, 477-488.	1.7	32
198	Biological pretreatment of rice straw by fermenting with Dichomitus squalens. New Biotechnology, 2010, 27, 424-434.	2.4	53

#	Article	IF	CITATIONS
199	Global metabolite profiling of agarose degradation by Saccharophagus degradans 2-40. New Biotechnology, 2010, 27, 156-168.	2.4	26
200	Response surface optimised extraction and chromatographic purification of rosmarinic acid from Melissa officinalis leaves. Food Chemistry, 2010, 121, 521-526.	4.2	50
201	Anti-diabetic effects of lemon balm (<i>Melissa officinalis</i>) essential oil on glucose- and lipid-regulating enzymes in type 2 diabetic mice. British Journal of Nutrition, 2010, 104, 180-188.	1.2	104
202	Evaluation of Sampling and Extraction Methodologies for the Global Metabolic Profiling of <i>Saccharophagus degradans</i> . Analytical Chemistry, 2010, 82, 6660-6666.	3.2	70
203	Fatty acid profiling and proteomic analysis of Salmonella enterica serotype Typhimurium inactivated with supercritical carbon dioxide. International Journal of Food Microbiology, 2009, 134, 190-195.	2.1	27
204	Functional characterization of a bacterial expansin from <i>Bacillus subtilis</i> for enhanced enzymatic hydrolysis of cellulose. Biotechnology and Bioengineering, 2009, 102, 1342-1353.	1.7	142
205	Fungal pretreatment of lignocellulose by <i>Phanerochaete chrysosporium</i> to produce ethanol from rice straw. Biotechnology and Bioengineering, 2009, 104, 471-482.	1.7	176
206	Crystallization and preliminary X-ray analysis of neoagarobiose hydrolase from <i>Saccharophagus degradans</i> 2-40. Acta Crystallographica Section F: Structural Biology Communications, 2009, 65, 1299-1301.	0.7	20
207	Sensory Characteristics and Consumer Acceptability of Decaffeinated Green Teas. Journal of Food Science, 2009, 74, S135-41.	1.5	37
208	Combined effect of organic acids and supercritical carbon dioxide treatments against nonpathogenic <i>Escherichia coli</i> , <i>Listeria monocytogenes</i> , <i>Salmonella typhimurium</i> and <i>E.Âcoli</i> O157:H7 in fresh pork. Letters in Applied Microbiology, 2009, 49, 510-515.	1.0	47
209	Improved enzymatic hydrolysis yield of rice straw using electron beam irradiation pretreatment. Bioresource Technology, 2009, 100, 1285-1290.	4.8	202
210	Transglucosylation of caffeic acid by a recombinant sucrose phosphorylase in aqueous buffer and aqueous-supercritical CO2 media. Food Chemistry, 2009, 115, 1028-1033.	4.2	28
211	Optimal production of a novel endo-acting β-1,4-xylanase cloned from Saccharophagus degradans 2-40 into Escherichia coli BL21(DE3). New Biotechnology, 2009, 26, 157-164.	2.4	18
212	Ethanol production from rice straw using optimized aqueous-ammonia soaking pretreatment and simultaneous saccharification and fermentation processes. Bioresource Technology, 2009, 100, 4374-4380.	4.8	247
213	Effects of supercritical carbon dioxide treatment against generic Escherichia coli, Listeria monocytogenes, Salmonella typhimurium, and E. coli O157:H7 in marinades and marinated pork. Meat Science, 2009, 82, 419-424.	2.7	49
214	Flow cytometric analysis of Salmonella enterica serotype Typhimurium inactivated with supercritical carbon dioxide. Journal of Microbiological Methods, 2009, 78, 155-160.	0.7	26
215	Flavonoid Compounds Are Enriched in Lemon Balm (Melissa officinalis) Leaves by a High Level of Sucrose and Confer Increased Antioxidant Activity. Hortscience: A Publication of the American Society for Hortcultural Science, 2009, 44, 1907-1913.	0.5	19
216	Strategies for producing recombinant sucrose phosphorylase originating from Bifidobacterium longum in Escherichia coli JM109. Process Biochemistry, 2008, 43, 822-828.	1.8	4

#	Article	IF	CITATIONS
217	Ectopic expression of Expansin3 or Expansinβ1 causes enhanced hormone and salt stress sensitivity in Arabidopsis. Biotechnology Letters, 2008, 30, 1281-1288.	1.1	62
218	Effect of Nafion® gradient in dual catalyst layer on proton exchange membrane fuel cell performance. International Journal of Hydrogen Energy, 2008, 33, 2783-2789.	3.8	58
219	Preparation of Lowâ€Fat Uptake Doughnut by Dry Particle Coating Technique. Journal of Food Science, 2008, 73, E137-42.	1.5	15
220	Effects of supercritical carbon dioxide treatment for sterilization purpose on meat quality of porcine longissimus dorsi muscle. LWT - Food Science and Technology, 2008, 41, 317-322.	2.5	49
221	Analysis of survival rates and cellular fatty acid profiles of Listeria monocytogenes treated with supercritical carbon dioxide under the influence of cosolvents. Journal of Microbiological Methods, 2008, 75, 47-54.	0.7	46
222	Asian plantain (<i>Plantago asiatica</i>) essential oils suppress 3-hydroxy-3-methyl-glutaryl-co-enzyme A reductase expression <i>in vitro</i> and <i>in vivo</i> and show hypocholesterolaemic properties in mice. British Journal of Nutrition, 2008, 99, 67-75.	1.2	38
223	Modeling of the inactivation of Salmonella typhimurium by supercritical carbon dioxide in physiological saline and phosphate-buffered saline. Journal of Microbiological Methods, 2007, 70, 132-141.	0.7	66
224	Effect of mass transfer on the removal of caffeine from green tea by supercritical carbon dioxide. Journal of Supercritical Fluids, 2007, 42, 205-211.	1.6	75
225	Effects of cosolvents on the decaffeination of green tea by supercritical carbon dioxide. Food Chemistry, 2007, 105, 1011-1017.	4.2	100
226	A 90 day repeated oral toxicity study on plantamajoside concentrate from <i>Plantago asiatica</i> . Phytotherapy Research, 2007, 21, 1118-1123.	2.8	17
227	Effect of Supercritical Carbon Dioxide Decaffeination on Volatile Components of Green Teas. Journal of Food Science, 2007, 72, S497-S502.	1.5	36
228	Modeling the inactivation of Escherichia coli O157:H7 and generic Escherichia coli by supercritical carbon dioxide. International Journal of Food Microbiology, 2007, 118, 52-61.	2.1	52
229	Expression of yeast cadmium factor 1 (YCF1) confers salt tolerance to Arabidopsis thaliana. Plant Science, 2006, 170, 534-541.	1.7	14
230	Metabolomic differentiation of deer antlers of various origins by 1H NMR spectrometry and principal components analysis. Journal of Pharmaceutical and Biomedical Analysis, 2006, 41, 1047-1050.	1.4	18
231	Isolation and characterization of promoters from Lactococcus lactis ssp. cremoris LM0230. Food Microbiology, 2006, 23, 82-89.	2.1	15
232	A food-grade expression/secretion vector for Lactococcus lactis that uses an α-galactosidase gene as a selection marker. Food Microbiology, 2006, 23, 468-475.	2.1	19
233	Antioxidant Effects of Aqueous Extract of Terminalia chebula in Vivo and in Vitro. Biological and Pharmaceutical Bulletin, 2005, 28, 1639-1644.	0.6	130
234	Optimal recovery of high-purity rutin crystals from the whole plant of Fagopyrum esculentum Moench (buckwheat) by extraction, fractionation, and recrystallization. Bioresource Technology, 2005, 96, 1709-1712.	4.8	67

#	Article	IF	CITATIONS
235	Conversion of bark-rich biomass mixture into fermentable sugar by two-stage dilute acid-catalyzed hydrolysis. Bioresource Technology, 2005, 96, 1249-1255.	4.8	69
236	Extraction and chromatographic separation of anticarcinogenic fractions from cacao bean husk. BioFactors, 2005, 23, 141-150.	2.6	10
237	Analysis and characterization of aroma-active compounds ofSchizandra chinensis (omija) leaves. Journal of the Science of Food and Agriculture, 2005, 85, 161-166.	1.7	22
238	Two-stage dilute acid-catalyzed hydrolytic conversion of softwood sawdust into sugars fermentable by ethanologenic microorganisms. Journal of the Science of Food and Agriculture, 2005, 85, 2461-2467.	1.7	22
239	Modulation of gene expressions and enzyme activities of methionine sulfoxide reductases by cold, ABA or high salt treatments in Arabidopsis. Plant Science, 2005, 169, 1030-1036.	1.7	33
240	Induction of apoptosis in a human lymphoma cell line by hydrophobic peptide fraction separated from anchovy sauce. BioFactors, 2004, 21, 63-67.	2.6	51
241	Characterization of aroma-active compounds ofAbies nephrolepis(Khinganï¬r) needles using aroma extract dilution analysis. Flavour and Fragrance Journal, 2004, 19, 74-79.	1.2	19
242	Aroma-active compounds ofPinus densi?ora (red pine) needles. Flavour and Fragrance Journal, 2004, 19, 532-537.	1.2	22
243	Characterization of potent aroma compounds inChrysanthemum coronarium L.(Garland) using aroma extract dilution analysis. Flavour and Fragrance Journal, 2004, 19, 401-405.	1.2	31
244	Extraction and fractionation of glucosyltransferase inhibitors from cacao bean husk. Process Biochemistry, 2004, 39, 2043-2046.	1.8	23
245	Cloning and expression of sucrose phosphorylase gene from Bifidobacterium longum in E. coli and characterization of the recombinant enzyme. Biotechnology Letters, 2003, 25, 1211-1217.	1.1	36
246	Peptides from Anchovy Sauce Induce Apoptosis in a Human Lymphoma Cell (U937) through the Increase of Caspase-3 and -8 Activities. Annals of the New York Academy of Sciences, 2003, 1010, 399-404.	1.8	35
247	Aroma dilution method using GC injector split ratio for volatile compounds extracted by headspace solid phase microextraction. Food Chemistry, 2003, 83, 151-158.	4.2	57
248	Cell Cycle Dysregulation Induced by Cytoplasm of Lactococcus lactis ssp. lactis in SNUC2A, a Colon Cancer Cell Line. Nutrition and Cancer, 2003, 46, 197-201.	0.9	39
249	A mass transfer model for super- and near-critical CO2extraction of spearmint leaf oil. Separation Science and Technology, 2002, 37, 2271-2288.	1.3	14
250	Effects of Pressing Lignocellulosic Biomass on Sugar Yield in Two-Stage Dilute-Acid Hydrolysis Process. Biotechnology Progress, 2002, 18, 489-494.	1.3	50
251	Effects of Operating Parameters on Countercurrent Extraction of Hemicellulosic Sugars from Pretreated Softwood. Applied Biochemistry and Biotechnology, 2002, 98-100, 147-160.	1.4	11
252	DESORPTION KINETIC MODEL FOR SUPERCRITICAL FLUID EXTRACTION OF SPEARMINT LEAF OIL. Separation Science and Technology, 2001, 36, 1437-1450.	1.3	7

#	Article	IF	CITATIONS
253	Supercritical CO2 pretreatment of lignocellulose enhances enzymatic cellulose hydrolysis. Bioresource Technology, 2001, 77, 139-144.	4.8	303
254	Continuous Countercurrent Extraction of Hemicellulose from Pretreated Wood Residues. Applied Biochemistry and Biotechnology, 2001, 91-93, 253-268.	1.4	30
255	Dynamic Extraction of Spearmint Oil Components by Using Supercritical CO2. Separation Science and Technology, 2000, 35, 315-322.	1.3	10
256	Equilibrium solubilities of spearmint oil components in supercritical carbon dioxide. Fluid Phase Equilibria, 1999, 164, 107-115.	1.4	45
257	Engineering of Klebsiella oxytoca for the Production of 2,3-Butanediol from High Concentration of Xylose. ACS Sustainable Chemistry and Engineering, 0, , .	3.2	3