List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9383930/publications.pdf Version: 2024-02-01

ABDO A FLEIKY

#	Article	IF	CITATIONS
1	Ribavirin, Remdesivir, Sofosbuvir, Galidesivir, and Tenofovir against SARS-CoV-2 RNA dependent RNA polymerase (RdRp): A molecular docking study. Life Sciences, 2020, 253, 117592.	4.3	717
2	Anti-HCV, nucleotide inhibitors, repurposing against COVID-19. Life Sciences, 2020, 248, 117477.	4.3	546
3	COVID-19 spike-host cell receptor GRP78 binding site prediction. Journal of Infection, 2020, 80, 554-562.	3.3	403
4	GRP78: A cell's response to stress. Life Sciences, 2019, 226, 156-163.	4.3	356
5	SARS-CoV-2 RNA dependent RNA polymerase (RdRp) targeting: an <i>in silico</i> perspective. Journal of Biomolecular Structure and Dynamics, 2021, 39, 1-9.	3.5	219
6	Natural products may interfere with SARS-CoV-2 attachment to the host cell. Journal of Biomolecular Structure and Dynamics, 2021, 39, 1-10.	3.5	125
7	Quantitative structureâ€activity relationship and molecular docking revealed a potency of antiâ€hepatitis C virus drugs against human corona viruses. Journal of Medical Virology, 2017, 89, 1040-1047.	5.0	99
8	Caffeic acid derivatives (CAFDs) as inhibitors of SARS-CoV-2: CAFDs-based functional foods as a potential alternative approach to combat COVID-19. Phytomedicine, 2021, 85, 153310.	5.3	78
9	Zika viral polymerase inhibition using antiâ€HCV drugs both in market and under clinical trials. Journal of Medical Virology, 2016, 88, 2044-2051.	5.0	75
10	GRP78 targeting: Hitting two birds with a stone. Life Sciences, 2020, 260, 118317.	4.3	73
11	Clean Grinding Technique: A Facile Synthesis and In Silico Antiviral Activity of Hydrazones, Pyrazoles, and Pyrazines Bearing Thiazole Moiety against SARS-CoV-2 Main Protease (Mpro). Molecules, 2020, 25, 4565.	3.8	52
12	Novel guanosine derivatives against MERS CoV polymerase: An <i>in silico</i> perspective. Journal of Biomolecular Structure and Dynamics, 2021, 39, 2923-2931.	3.5	52
13	Multidimensional in silico strategy for identification of natural polyphenols-based SARS-CoV-2 main protease (Mpro) inhibitors to unveil a hope against COVID-19. Computers in Biology and Medicine, 2022, 145, 105452.	7.0	44
14	Molecular Modeling Comparison of the Performance of NS5b Polymerase Inhibitor (PSI-7977) on Prevalent HCV Genotypes. Protein Journal, 2013, 32, 75-80.	1.6	43
15	Molecular dynamics and docking reveal the potency of novel GTP derivatives against RNA dependent RNA polymerase of genotype 4a HCV. Life Sciences, 2019, 238, 116958.	4.3	42
16	Molecular dynamics simulation revealed binding of nucleotide inhibitors to ZIKV polymerase over 444 nanoseconds. Journal of Medical Virology, 2018, 90, 13-18.	5.0	39
17	A Review of Human Coronaviruses' Receptors: The Host-Cell Targets for the Crown Bearing Viruses. Molecules, 2021, 26, 6455.	3.8	36
18	SARS-CoV-2 Spike-Heat Shock Protein A5 (GRP78) Recognition may be Related to the Immersed Human Coronaviruses. Frontiers in Pharmacology, 2020, 11, 577467.	3.5	34

#	Article	IF	CITATIONS
19	Host-cell recognition through GRP78 is enhanced in the new UK variant of SARS-CoV-2, in silico. Journal of Infection, 2021, 82, 186-230.	3.3	34
20	Molecular docking revealed the binding of nucleotide/side inhibitors to Zika viral polymerase solved structures. SAR and QSAR in Environmental Research, 2018, 29, 409-418.	2.2	33
21	IDX-184 is a superior HCV direct-acting antiviral drug: a QSAR study. Medicinal Chemistry Research, 2016, 25, 1005-1008.	2.4	32
22	Zika virus: novel guanosine derivatives revealed strong binding and possible inhibition of the polymerase. Future Virology, 2017, 12, 721-728.	1.8	30
23	Novel Guanosine Derivatives as Anti-HCV NS5b Polymerase: A QSAR and Molecular Docking Study. Medicinal Chemistry, 2019, 15, 130-137.	1.5	29
24	Zika virus envelope – heat shock protein A5 (GRP78) binding site prediction. Journal of Biomolecular Structure and Dynamics, 2021, 39, 5248-5260.	3.5	28
25	Correlation to Protein Conformation of Wide-Angle X-ray Scatter Parameters. Protein Journal, 2010, 29, 545-550.	1.6	27
26	Alkaloids and flavonoids from African phytochemicals as potential inhibitors of SARS-Cov-2 RNA-dependent RNA polymerase: an <i>in silico</i> perspective. Antiviral Chemistry and Chemotherapy, 2020, 28, 204020662098407.	0.6	26
27	Recognition through GRP78 is enhanced in the UK, South African, and Brazilian variants of SARS-CoV-2; An in silico perspective. Biochemical and Biophysical Research Communications, 2021, 562, 89-93.	2.1	24
28	Structure-based virtual screening suggests inhibitors of 3-Chymotrypsin-Like Protease of SARS-CoV-2 from Vernonia amygdalina and Occinum gratissimum. Computers in Biology and Medicine, 2021, 136, 104671.	7.0	22
29	Human papillomavirus E6: Host cell receptor, GRP78, binding site prediction. Journal of Medical Virology, 2020, 92, 3759-3765.	5.0	20
30	The anti-HCV, Sofosbuvir, versus the anti-EBOV Remdesivir against SARS-CoV-2 RNA dependent RNA polymerase in silico. Molecular Diversity, 2022, 26, 171-181.	3.9	20
31	2′-Methylguanosine Prodrug (IDX-184), Phosphoramidate Prodrug (Sofosbuvir), Diisobutyryl Prodrug (R7128) Are Better Than Their Parent Nucleotides and Ribavirin in Hepatitis C Virus Inhibition: A Molecular Modeling Study. Journal of Computational and Theoretical Nanoscience, 2015, 12, 376-386.	0.4	19
32	The antiviral Sofosbuvir against mucormycosis: an <i>in silico</i> perspective. Future Virology, 2019, 14, 739-744.	1.8	18
33	Ebola virus glycoprotein GP1—host cell-surface HSPA5 binding site prediction. Cell Stress and Chaperones, 2020, 25, 541-548.	2.9	18
34	A possible role for GRP78 in cross vaccination against COVID-19. Journal of Infection, 2021, 82, 282-327.	3.3	18
35	The Electronic and Quantitative Structure Activity Relationship Properties of Modified Telaprevir Compounds as HCV NS3 Protease Inhibitors. Journal of Computational and Theoretical Nanoscience, 2014, 11, 544-548.	0.4	17
36	Molecular modeling and docking revealed superiority of IDX-184 as HCV polymerase inhibitor. Future Virology, 2017, 12, 339-347.	1.8	17

#	Article	IF	CITATIONS
37	Novel guanosine derivatives against Zika virus polymerase in silico. Journal of Medical Virology, 2020, 92, 11-16.	5.0	17
38	SARS-CoV-2 spike behavior in situ: a Cryo-EM images for a better understanding of the COVID-19 pandemic. Signal Transduction and Targeted Therapy, 2020, 5, 252.	17.1	17
39	GRP78: A possible relationship of COVID-19 and the mucormycosis; in silico perspective. Computers in Biology and Medicine, 2021, 139, 104956.	7.0	14
40	Chaga Medicinal Mushroom Inonotus obliquus (Agaricomycetes) Terpenoids May Interfere with SARS-CoV-2 Spike Protein Recognition of the Host Cell: A Molecular Docking Study. International Journal of Medicinal Mushrooms, 2021, 23, 1-14.	1.5	13
41	Theoretical Study on Modified Boceprevir Compounds as NS3 Protease Inhibitors. Journal of Computational and Theoretical Nanoscience, 2015, 12, 371-375.	0.4	12
42	Novel inhibitors against wild-type and mutated HCV NS3 serine protease: an in silico study. VirusDisease, 2019, 30, 207-213.	2.0	11
43	In silico estrogen-like activity and in vivo osteoclastogenesis inhibitory effect of Cicer arietinum extract. Cellular and Molecular Biology, 2018, 64, 29.	0.9	11
44	Novel adenosine derivatives against SARS-CoV-2 RNA-dependent RNA polymerase: an in silico perspective. Pharmacological Reports, 2021, 73, 1754-1764.	3.3	10
45	Host-cell recognition through Cs-GRP78 is enhanced in the new Omicron variant of SARS-CoV-2, in silico structural point of view. Journal of Infection, 2022, 84, 722-746.	3.3	10
46	Molecular dynamics simulations and MM-GBSA reveal novel guanosine derivatives against SARS-CoV-2 RNA dependent RNA polymerase. RSC Advances, 2022, 12, 2741-2750.	3.6	10
47	Interference of Chaga mushroom terpenoids with the attachment of SARS-CoV-2; in silico perspective. Computers in Biology and Medicine, 2022, 145, 105478.	7.0	9
48	Dual targeting of RdRps of SARS-CoV-2 and the mucormycosis-causing fungus: an <i>in silico</i> perspective. Future Microbiology, 2022, 17, 755-762.	2.0	9
49	Reply to a letter to the editor. Life Sciences, 2020, 252, 117715.	4.3	8
50	Targeting SARS-CoV-2 nonstructural proteinÂ15 endoribonuclease: an <i>in silico</i> perspective. Future Virology, 2021, 16, 467-474.	1.8	8
51	Potential antiviral properties of antiplatelet agents against SARS-CoV-2 infection: an in silico perspective. Journal of Thrombosis and Thrombolysis, 2022, 53, 273-281.	2.1	8
52	COVID-19 and Cell Stress. Advances in Experimental Medicine and Biology, 2021, 1318, 169-178.	1.6	8
53	In silico estrogen-like activity and in vivo osteoclastogenesis inhibitory effect of Cicer arietinum extract. Cellular and Molecular Biology, 2018, 64, 29-39.	0.9	8
54	Recognition of gluconeogenic enzymes; Icl1, Fbp1, and Mdh2 by Gid4 ligase: A molecular docking study. Journal of Molecular Recognition, 2020, 33, e2831.	2.1	6

#	Article	IF	CITATIONS
55	Recognition of the gluconeogenic enzyme, Pck1, via the Gid4 E3 ligase: An in silico perspective. Journal of Molecular Recognition, 2020, 33, e2821.	2.1	4
56	Ribavirin, Remdesivir, Sofosbuvir, Galidesivir, and Tenofovir against SARS-CoV-2 RNA dependent RNA polymerase (RdRp): A molecular docking study. , 2020, 253, 117592-117592.		1
57	Image quality characteristics of myocardial perfusion SPECT imaging using state-of-the-art commercial software algorithms: evaluation of 10 reconstruction methods. American Journal of Nuclear Medicine and Molecular Imaging, 2020, 10, 375-386.	1.0	0
58	Target-filter combination effects on breast tissue characterization using mammographic X-rays: A monte carlo simulation study. Journal of X-Ray Science and Technology, 2022, , 1-12.	1.0	0