
Huaiyu Hu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/938382/publications.pdf Version: 2024-02-01

Ημλινμ Ημ

#	Article	IF	CITATIONS
1	TMEM216 Deletion Causes Mislocalization of Cone Opsin and Rhodopsin and Photoreceptor Degeneration in Zebrafish. , 2020, 61, 24.		6
2	Eyes shut homolog (EYS) interacts with matriglycan of O-mannosyl glycans whose deficiency results in EYS mislocalization and degeneration of photoreceptors. Scientific Reports, 2020, 10, 7795.	1.6	16
3	Postnatal Gene Therapy Improves Spatial Learning Despite the Presence of Neuronal Ectopia in a Model of Neuronal Migration Disorder. Genes, 2016, 7, 105.	1.0	6
4	Eyes shut homolog is required for maintaining the ciliary pocket and survival of photoreceptors in zebrafish. Biology Open, 2016, 5, 1662-1673.	0.6	55
5	Protein O-Mannosylation in the Murine Brain: Occurrence of Mono-O-Mannosyl Glycans and Identification of New Substrates. PLoS ONE, 2016, 11, e0166119.	1.1	23
6	New concepts in basement membrane biology. FEBS Journal, 2015, 282, 4466-4479.	2.2	121
7	Biochemical and biophysical changes underlie the mechanisms of basement membrane disruptions in a mouse model of dystroglycanopathy. Matrix Biology, 2013, 32, 196-207.	1.5	10
8	Adeno-Associated Viral-Mediated <i>LARGE</i> Gene Therapy Rescues the Muscular Dystrophic Phenotype in Mouse Models of Dystroglycanopathy. Human Gene Therapy, 2013, 24, 317-330.	1.4	33
9	Differential glycosylation of Â-dystroglycan and proteins other than Â-dystroglycan by like-glycosyltransferase. Glycobiology, 2012, 22, 235-247.	1.3	27
10	Pikachurin interaction with dystroglycan is diminished by defective O-mannosyl glycosylation in congenital muscular dystrophy models and rescued by LARGE overexpression. Neuroscience Letters, 2011, 489, 10-15.	1.0	25
11	Breaches of the pial basement membrane are associated with defective dentate gyrus development in mouse models of congenital muscular dystrophies. Neuroscience Letters, 2011, 505, 19-24.	1.0	14
12	Conditional knockout of protein Oâ€mannosyltransferase 2 reveals tissueâ€specific roles of Oâ€mannosyl glycosylation in brain development. Journal of Comparative Neurology, 2011, 519, 1320-1337.	0.9	43
13	LARGE Expression Augments the Glycosylation of Glycoproteins in Addition to α-Dystroglycan Conferring Laminin Binding. PLoS ONE, 2011, 6, e19080.	1.1	19
14	Cellular and Molecular Characterization of Abnormal Brain Development in Protein O-Mannose N-Acetylglucosaminyltransferase 1 Knockout Mice. Methods in Enzymology, 2010, 479, 353-366.	0.4	5
15	Retinal ectopias and mechanically weakened basement membrane in a mouse model of muscle-eye-brain (MEB) disease congenital muscular dystrophy. Molecular Vision, 2010, 16, 1415-28.	1.1	27
16	Breaches of the pial basement membrane and disappearance of the glia limitans during development underlie the cortical lamination defect in the mouse model of muscle-eye-brain disease. Journal of Comparative Neurology, 2007, 501, 168-183.	0.9	71
17	Ectopia of meningeal fibroblasts and reactive gliosis in the cerebral cortex of the mouse model of muscleâ€eyeâ€brain disease. Journal of Comparative Neurology, 2007, 505, 459-477.	0.9	32
18	Breaches of the pial basement membrane and disappearance of the glia limitans during development underlie the cortical lamination defect in the mouse model of muscle-eye-brain disease. Journal of Comparative Neurology, 2007, 502, 168-83.	0.9	12

ΗυΑΙΥU Ηυ

#	Article	IF	CITATIONS
19	A genetic model for muscle–eye–brain disease in mice lacking protein O-mannose 1,2-N-acetylglucosaminyltransferase (POMGnT1). Mechanisms of Development, 2006, 123, 228-240.	1.7	115
20	Neuronal Migration. , 2006, , 27-44.		2
21	Congenital diaphragmatic hernia, kidney agenesis and cardiac defects associated with Slit3-deficiency in mice. Mechanisms of Development, 2003, 120, 1059-1070.	1.7	112
22	Cell-surface heparan sulfate is involved in the repulsive guidance activities of Slit2 protein. Nature Neuroscience, 2001, 4, 695-701.	7.1	186
23	Polysialic acid regulates chain formation by migrating olfactory interneuron precursors. Journal of Neuroscience Research, 2000, 61, 480-492.	1.3	64