
Stig Irving Olsen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9383540/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Insights from combining techno-economic and life cycle assessment – a case study of polyphenol extraction from red wine pomace. Resources, Conservation and Recycling, 2021, 167, 105318.	5.3	24
2	Addressing Nutrient Depletion in Tanzanian Sisal Fiber Production Using Life Cycle Assessment and Circular Economy Principles, with Bioenergy Co-Production. Sustainability, 2021, 13, 8881.	1.6	4
3	Testing the no agricultural waste concept – an environmental comparison of biorefinery value chains in various regions. Resources, Conservation and Recycling, 2021, 174, 105702.	5.3	6
4	Use of data envelopment analysis to benchmark environmental product declarations—a suggested framework. International Journal of Life Cycle Assessment, 2020, 25, 2417-2431.	2.2	4
5	Life cycle assessment of Danish pork exports using different cooling technologies and comparison of upstream supply chain efficiencies between Denmark, China and Australia. Journal of Cleaner Production, 2020, 244, 118816.	4.6	18
6	Delta Life Cycle Assessment of Regenerative Agriculture in a Sheep Farming System. Integrated Environmental Assessment and Management, 2020, 16, 282-290.	1.6	19
7	Using a gate-to-gate LCA to apply circular economy principles to a food processing SME. Journal of Cleaner Production, 2020, 251, 119566.	4.6	26
8	Assessing New Biotechnologies by Combining TEA and TM-LCA for an Efficient Use of Biomass Resources. Sustainability, 2020, 12, 3676.	1.6	9
9	Argumentation Corrected Context Weighting-Life Cycle Assessment: A Practical Method of Including Stakeholder Perspectives in Multi-Criteria Decision Support for LCA. Sustainability, 2020, 12, 2170.	1.6	8
10	Making use of life cycle assessment and environmental product declarations: A survey with practitioners. Journal of Industrial Ecology, 2020, 24, 965-975.	2.8	13
11	The Long Road to a Circular Economy. Integrated Environmental Assessment and Management, 2019, 15, 492-493.	1.6	5
12	Maximizing Environmental Impact Savings Potential Through Innovative Biorefinery Alternatives: An Application of the TM-LCA Framework for Regional Scale Impact Assessment. Sustainability, 2019, 11, 3836.	1.6	15
13	Development of a social impact assessment method and application to a case study of sugarcane, sugar, and ethanol in Thailand. International Journal of Life Cycle Assessment, 2019, 24, 2054-2072.	2.2	18
14	Synthesis and sustainable assessment of thiol-functionalization of magnetic graphene oxide and superparamagnetic Fe3O4@SiO2 for Hg(II) removal from aqueous solution and petrochemical wastewater. Journal of the Taiwan Institute of Chemical Engineers, 2019, 95, 78-93.	2.7	44
15	Improving environmental performance of post-harvest supply chains of fruits and vegetables in Europe: Potential contribution from ultrasonic humidification. Journal of Cleaner Production, 2018, 182, 16-26.	4.6	31
16	LCA of Nanomaterials. , 2018, , 817-833.		2
17	Illustrative Case Study: Life Cycle Assessment of Four Window Alternatives. , 2018, , 1059-1146.		2
18	Life cycle assessment of nanoadsorbents at early stage technological development. Journal of Cleaner Production, 2018, 174, 527-537.	4.6	20

STIG IRVING OLSEN

#	Article	IF	CITATIONS
19	Exploring the Implementation of a Circular Economy Strategy: The Case of a Closed-loop Supply of Aluminum Beverage Cans. Procedia CIRP, 2018, 69, 810-815.	1.0	22
20	Sustainability and LCA in Engineering Education – A Course Curriculum. Procedia CIRP, 2018, 69, 627-632.	1.0	15
21	Renewable Energy and Carbon Management in the Cradleâ€toâ€Cradle Certification: Limitations and Opportunities. Journal of Industrial Ecology, 2018, 22, 760-772.	2.8	9
22	Social Life Cycle Assessment of a Concentrated Solar Power Plant in Spain: A Methodological Proposal. Journal of Industrial Ecology, 2017, 21, 1566-1577.	2.8	52
23	Combining Ecoâ€Efficiency and Ecoâ€Effectiveness for Continuous Loop Beverage Packaging Systems: Lessons from the Carlsberg Circular Community. Journal of Industrial Ecology, 2017, 21, 742-753.	2.8	72
24	Ecodesign framework for developing wind turbines. Journal of Cleaner Production, 2016, 126, 643-653.	4.6	23
25	Closing the loop for aluminum cans: Life Cycle Assessment of progression in Cradle-to-Cradle certification levels. Journal of Cleaner Production, 2016, 126, 352-362.	4.6	49
26	Life cycle assessment of onshore and offshore wind energy-from theory to application. Applied Energy, 2016, 180, 327-337.	5.1	159
27	Circular economy: To be or not to be in a closed product loop? A Life Cycle Assessment of aluminium cans with inclusion of alloying elements. Resources, Conservation and Recycling, 2016, 114, 18-31.	5.3	115
28	Greenhouse gas emissions and energy balance of biodiesel production from microalgae cultivated in photobioreactors in Denmark: a life-cycle modeling. Journal of Cleaner Production, 2016, 112, 4084-4092.	4.6	88
29	Introducing life cycle thinking in product development – A case from Siemens Wind Power. CIRP Annals - Manufacturing Technology, 2015, 64, 45-48.	1.7	14
30	Teaching sustainable solutions in engineering. International Journal of Innovation and Sustainable Development, 2015, 9, 157.	0.3	6
31	Freshwater ecotoxicity characterisation factor for metal oxide nanoparticles: A case study on titanium dioxide nanoparticle. Science of the Total Environment, 2015, 505, 494-502.	3.9	66
32	Carbon balance impacts of land use changes related to the life cycle of Malaysian palm oil-derived biodiesel. International Journal of Life Cycle Assessment, 2014, 19, 558-566.	2.2	26
33	Life-cycle assessment of engineered nanomaterials: a literature review of assessment status. Journal of Nanoparticle Research, 2014, 16, 1.	0.8	76
34	A comparative study on life cycle assessment of micro and macro components. International Journal of Advanced Manufacturing Technology, 2013, 67, 1171-1189.	1.5	1
35	Life Cycle Assessment of Renewable Energy Sources. Green Energy and Technology, 2013, , .	0.4	21
36	Importance of Life Cycle Assessment of Renewable Energy Sources. Green Energy and Technology, 2013, , 1-11.	0.4	10

STIG IRVING OLSEN

#	Article	IF	CITATIONS
37	Comparison of Algal Biodiesel Production Pathways Using Life Cycle Assessment Tool. Green Energy and Technology, 2013, , 145-168.	0.4	4
38	Bioelectrochemical systems (BES) for sustainable energy production and product recovery from organic wastes and industrial wastewaters. RSC Advances, 2012, 2, 1248-1263.	1.7	468
39	Limitations of Carbon Footprint as Indicator of Environmental Sustainability. Environmental Science & Technology, 2012, 46, 4100-4108.	4.6	284
40	Analysis of current research addressing complementary use of life-cycle assessment and risk assessment for engineered nanomaterials: have lessons been learned from previous experience with chemicals?. Journal of Nanoparticle Research, 2012, 14, 1.	0.8	58
41	Greenhouse gas reductions through enhanced use of residues in the life cycle of Malaysian palm oil derived biodiesel. Bioresource Technology, 2012, 104, 358-366.	4.8	44
42	Key Issues in Life Cycle Assessment of Biofuels. Green Energy and Technology, 2012, , 213-228.	0.4	8
43	A critical review of biochemical conversion, sustainability and life cycle assessment of algal biofuels. Applied Energy, 2011, 88, 3548-3555.	5.1	409
44	Normalization in EDIP97 and EDIP2003: updated European inventory for 2004 and guidance towards a consistent use in practice. International Journal of Life Cycle Assessment, 2011, 16, 401-409.	2.2	62
45	Normalization references for Europe and North America for application with USEtoxâ,,¢ characterization factors. International Journal of Life Cycle Assessment, 2011, 16, 728-738.	2.2	44
46	A viable technology to generate thirdâ€generation biofuel. Journal of Chemical Technology and Biotechnology, 2011, 86, 1349-1353.	1.6	89
47	Environmental benefits from reusing clothes. International Journal of Life Cycle Assessment, 2010, 15, 726-736.	2.2	154
48	The importance of life cycle concepts for the development of safe nanoproducts. Toxicology, 2010, 269, 160-169.	2.0	221
49	Carbon footprint as environmental performance indicator for the manufacturing industry. CIRP Annals - Manufacturing Technology, 2010, 59, 37-40.	1.7	109
50	Gone…but not away—addressing the problem of long-term impacts from landfills in LCA. International Journal of Life Cycle Assessment, 2008, 13, 547-554.	2.2	50
51	Categorization framework to aid hazard identification of nanomaterials. Nanotoxicology, 2007, 1, 243-250.	1.6	195
52	Limits and prospects of the "incremental approach―and the European legislation on the management of risks related to nanomaterials. Regulatory Toxicology and Pharmacology, 2007, 48, 171-183.	1.3	69
53	Supporting Information: Dose-Response Modeling for Life Cycle Impact Assessment. Findings of the Portland Review Workshop. International Journal of Life Cycle Assessment, 2006, 11, 140-141.	2.2	0
54	Dose-Response Modeling for Life Cycle Impact Assessment - Findings of the Portland Review Workshop. International Journal of Life Cycle Assessment, 2006, 11, 137-140.	2.2	23

STIG IRVING OLSEN

#	Article	IF	CITATIONS
55	Environmental Assessment of Micro/Nano Production in a Life Cycle Perspective. Materials Research Society Symposia Proceedings, 2005, 895, 41.	0.1	1
56	Comparison between three different LCIA methods for aquatic ecotoxicity and a product environmental risk assessment. International Journal of Life Cycle Assessment, 2004, 9, 295.	2.2	65
57	Bringing science and pragmatism together a tiered approach for modelling toxicological impacts in LCA. International Journal of Life Cycle Assessment, 2004, 9, 320.	2.2	18
58	The potential role of life cycle assessment in regulation of chemicals in the European union. International Journal of Life Cycle Assessment, 2004, 9, 327.	2.2	20
59	Life cycle impact assessment and risk assessment of chemicals — a methodological comparison. Environmental Impact Assessment Review, 2001, 21, 385-404.	4.4	98