
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9383432/publications.pdf Version: 2024-02-01

ΗλΟ SUN

#	Article	IF	CITATIONS
1	Achieving purely organic room temperature phosphorescence in aqueous solution. Aggregate, 2023, 4,	5.2	36
2	Functionalization of Fiber Devices: Materials, Preparations and Applications. Advanced Fiber Materials, 2022, 4, 324-341.	7.9	29
3	Industrial scale production of fibre batteries by a solution-extrusion method. Nature Nanotechnology, 2022, 17, 372-377.	15.6	110
4	Chemical Fingerprinting of HULIS in Particulate Matters Emitted from Residential Coal and Biomass Combustion. Environmental Science & Technology, 2021, 55, 3593-3603.	4.6	41
5	Particle-Phase Photoreactions of HULIS and TMIs Establish a Strong Source of H ₂ O ₂ and Particulate Sulfate in the Winter North China Plain. Environmental Science & Technology, 2021, 55, 7818-7830.	4.6	24
6	Lithiumâ€Metal Anodes Working at 60 mA cm ^{â^'2} and 60 mAh cm ^{â^'2} Nanoscale Lithiumâ€Ion Adsorbing. Angewandte Chemie - International Edition, 2021, 60, 17419-17425.	through 7.2	39
7	Lithiumâ€Metal Anodes Working at 60â€mA cm ^{â^'2} and 60â€mAh cm ^{â^'2} Nanoscale Lithiumâ€Ion Adsorbing. Angewandte Chemie, 2021, 133, 17559-17565.	through 1.6	7
8	Rechargeable Na/Cl2 and Li/Cl2 batteries. Nature, 2021, 596, 525-530.	13.7	103
9	Commodity plastic burning as a source of inhaled toxic aerosols. Journal of Hazardous Materials, 2021, 416, 125820.	6.5	39
10	Highly elastic and low resistance deformable current collectors for safe and high-performance silicon and metallic lithium anodes. Journal of Power Sources, 2021, 511, 230418.	4.0	9
11	A high-capacity aqueous zinc-ion battery fiber with air-recharging capability. Journal of Materials Chemistry A, 2021, 9, 6811-6818.	5.2	51
12	Fibers to power the future. Joule, 2021, 5, 2764-2765.	11.7	3
13	Micro-nanospheres assembled with helically coiled nitrogen-doped carbon nanotubes: Fabrication and microwave absorption properties. Materials and Design, 2020, 186, 108290.	3.3	27
14	A Deepâ€Cycle Aqueous Zincâ€lon Battery Containing an Oxygenâ€Deficient Vanadium Oxide Cathode. Angewandte Chemie - International Edition, 2020, 59, 2273-2278.	7.2	257
15	A Deepâ€Cycle Aqueous Zincâ€lon Battery Containing an Oxygenâ€Deficient Vanadium Oxide Cathode. Angewandte Chemie, 2020, 132, 2293-2298.	1.6	71
16	A high-performance potassium metal battery using safe ionic liquid electrolyte. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 27847-27853.	3.3	49
17	Sources and health risks of PM2.5-bound polychlorinated biphenyls (PCBs) and organochlorine pesticides (OCPs) in a North China rural area. Journal of Environmental Sciences, 2020, 95, 240-247.	3.2	17
18	Complexation of Fe(III)/Catechols in atmospheric aqueous phase and the consequent cytotoxicity assessment in human bronchial epithelial cells (BEAS-2B). Ecotoxicology and Environmental Safety, 2020, 202, 110898.	2.9	10

#	Article	IF	CITATIONS
19	Highâ€Safety and Highâ€Energyâ€Density Lithium Metal Batteries in a Novel Ionicâ€Liquid Electrolyte. Advanced Materials, 2020, 32, e2001741.	11.1	176
20	Unexpectedly Increased Particle Emissions from the Steel Industry Determined by Wet/Semidry/Dry Flue Gas Desulfurization Technologies. Environmental Science & Technology, 2019, 53, 10361-10370.	4.6	39
21	A safe and non-flammable sodium metal battery based on an ionic liquid electrolyte. Nature Communications, 2019, 10, 3302.	5.8	173
22	A Sodiophilic Interphaseâ€Mediated, Dendriteâ€Free Anode with Ultrahigh Specific Capacity for Sodiumâ€Metal Batteries. Angewandte Chemie, 2019, 131, 17210-17216.	1.6	49
23	A Sodiophilic Interphaseâ€Mediated, Dendriteâ€Free Anode with Ultrahigh Specific Capacity for Sodiumâ€Metal Batteries. Angewandte Chemie - International Edition, 2019, 58, 17054-17060.	7.2	119
24	Size distribution and chemical composition of primary particles emitted during open biomass burning processes: Impacts on cloud condensation nuclei activation. Science of the Total Environment, 2019, 674, 179-188.	3.9	20
25	Amphiphilic core-sheath structured composite fiber for comprehensively performed supercapacitor. Science China Materials, 2019, 62, 955-964.	3.5	26
26	Stabilizing Lithium into Crossâ€Stacked Nanotube Sheets with an Ultraâ€High Specific Capacity for Lithium Oxygen Batteries. Angewandte Chemie - International Edition, 2019, 58, 2437-2442.	7.2	111
27	Stabilizing Lithium into Crossâ€Stacked Nanotube Sheets with an Ultraâ€High Specific Capacity for Lithium Oxygen Batteries. Angewandte Chemie, 2019, 131, 2459-2464.	1.6	18
28	The creation of hollow walls in carbon nanotubes for high-performance lithium ion batteries. Carbon, 2018, 133, 384-389.	5.4	32
29	Multicolor, Fluorescent Supercapacitor Fiber. Small, 2018, 14, e1702052.	5.2	30
30	A fiber-shaped solar cell showing a record power conversion efficiency of 10%. Journal of Materials Chemistry A, 2018, 6, 45-51.	5.2	93
31	A Lithium–Air Battery Stably Working at High Temperature with High Rate Performance. Small, 2018, 14, 1703454.	5.2	44
32	Programmable actuating systems based on swimming fiber robots. Carbon, 2018, 139, 241-247.	5.4	7
33	Alignment of Thermally Conducting Nanotubes Making High-Performance Light-Driving Motors. ACS Applied Materials & Interfaces, 2018, 10, 26765-26771.	4.0	24
34	A coaxial triboelectric nanogenerator fiber for energy harvesting and sensing under deformation. Journal of Materials Chemistry A, 2017, 5, 6032-6037.	5.2	98
35	Energy harvesting and storage in 1D devices. Nature Reviews Materials, 2017, 2, .	23.3	421
36	An intercalated graphene/(molybdenum disulfide) hybrid fiber for capacitive energy storage. Journal of Materials Chemistry A, 2017, 5, 925-930.	5.2	78

#	Article	IF	CITATIONS
37	The Deformations of Carbon Nanotubes under Cutting. ACS Nano, 2017, 11, 8464-8470.	7.3	20
38	Electrochemical Capacitors with High Output Voltages that Mimic Electric Eels. Advanced Materials, 2016, 28, 2070-2076.	11.1	119
39	A Novel Slicing Method for Thin Supercapacitors. Advanced Materials, 2016, 28, 6429-6435.	11.1	28
40	Integrating photovoltaic conversion and lithium ion storage into a flexible fiber. Journal of Materials Chemistry A, 2016, 4, 7601-7605.	5.2	42
41	A Selfâ€Healing Aqueous Lithiumâ€Ion Battery. Angewandte Chemie, 2016, 128, 14596-14600.	1.6	25
42	A Selfâ€Healing Aqueous Lithiumâ€Ion Battery. Angewandte Chemie - International Edition, 2016, 55, 14384-14388.	7.2	191
43	Largeâ€Area Supercapacitor Textiles with Novel Hierarchical Conducting Structures. Advanced Materials, 2016, 28, 8431-8438.	11.1	158
44	A hybrid carbon aerogel with both aligned and interconnected pores as interlayer for high-performance lithium–sulfur batteries. Nano Research, 2016, 9, 3735-3746.	5.8	140
45	An all-solid-state fiber-type solar cell achieving 9.49% efficiency. Journal of Materials Chemistry A, 2016, 4, 10105-10109.	5.2	77
46	Stable Hydrophobic Ionic Liquid Gel Electrolyte for Stretchable Fiberâ€ S haped Dyeâ€ S ensitized Solar Cell. ChemNanoMat, 2015, 1, 399-402.	1.5	36
47	Fabricating Continuous Supercapacitor Fibers with High Performances by Integrating All Building Materials and Steps into One Process. Advanced Materials, 2015, 27, 7854-7860.	11.1	176
48	Energy harvesting and storage devices fused into various patterns. Journal of Materials Chemistry A, 2015, 3, 14977-14984.	5.2	22
49	Recent progress in solar cells based on one-dimensional nanomaterials. Energy and Environmental Science, 2015, 8, 1139-1159.	15.6	164
50	Aligned carbon nanotube/molybdenum disulfide hybrids for effective fibrous supercapacitors and lithium ion batteries. Journal of Materials Chemistry A, 2015, 3, 17553-17557.	5.2	103
51	Synthesis and photovoltaic application of platinum-modified conducting aligned nanotube fiber. Science China Materials, 2015, 58, 289-293.	3.5	18
52	Selfâ€Powered Energy Fiber: Energy Conversion in the Sheath and Storage in the Core. Advanced Materials, 2014, 26, 7038-7042.	11.1	104
53	Solar Cells: Coreâ€5heath Carbon Nanostructured Fibers for Efficient Wireâ€5haped Dyeâ€5ensitized Solar Cells (Adv. Mater. 11/2014). Advanced Materials, 2014, 26, 1791-1791.	11.1	2
54	Energy Fibers: Self-Powered Energy Fiber: Energy Conversion in the Sheath and Storage in the Core (Adv. Mater. 41/2014). Advanced Materials, 2014, 26, 7132-7132.	11.1	0

#	Article	IF	CITATIONS
55	A Twisted Wire‧haped Dualâ€Function Energy Device for Photoelectric Conversion and Electrochemical Storage. Angewandte Chemie - International Edition, 2014, 53, 6664-6668.	7.2	82
56	Selfâ€Healable Electrically Conducting Wires for Wearable Microelectronics. Angewandte Chemie - International Edition, 2014, 53, 9526-9531.	7.2	190
57	A novel "energy fiber―by coaxially integrating dye-sensitized solar cell and electrochemical capacitor. Journal of Materials Chemistry A, 2014, 2, 1897-1902.	5.2	130
58	Stable wire-shaped dye-sensitized solar cells based on eutectic melts. Journal of Materials Chemistry A, 2014, 2, 3841.	5.2	23
59	Cross‣tacking Aligned Carbonâ€Nanotube Films to Tune Microwave Absorption Frequencies and Increase Absorption Intensities. Advanced Materials, 2014, 26, 8120-8125.	11.1	819
60	Quasi-solid-state, coaxial, fiber-shaped dye-sensitized solar cells. Journal of Materials Chemistry A, 2014, 2, 345-349.	5.2	73
61	Novel Graphene/Carbon Nanotube Composite Fibers for Efficient Wireâ€Shaped Miniature Energy Devices. Advanced Materials, 2014, 26, 2868-2873.	11.1	305
62	Coreâ€5heath Carbon Nanostructured Fibers for Efficient Wireâ€5haped Dyeâ€5ensitized Solar Cells. Advanced Materials, 2014, 26, 1694-1698.	11.1	76
63	Photovoltaic Wire with High Efficiency Attached onto and Detached from a Substrate Using a Magnetic Field. Angewandte Chemie - International Edition, 2013, 52, 8276-8280.	7.2	49
64	Efficient Dye-Sensitized Photovoltaic Wires Based on an Organic Redox Electrolyte. Journal of the American Chemical Society, 2013, 135, 10622-10625.	6.6	129
65	Winding ultrathin, transparent, and electrically conductive carbon nanotube sheets into high-performance fiber-shaped dye-sensitized solar cells. Journal of Materials Chemistry A, 2013, 1, 12422.	5.2	32
66	Photovoltaic Wire Derived from a Graphene Composite Fiber Achieving an 8.45 % Energy Conversion Efficiency. Angewandte Chemie - International Edition, 2013, 52, 7545-7548.	7.2	155
67	Developing Polymer Composite Materials: Carbon Nanotubes or Graphene?. Advanced Materials, 2013, 25, 5153-5176.	11.1	398