
Xiangzhen Kong

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9383387/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Raw walnut kernel: A natural source for dietary proteases and bioactive proteins. Food Chemistry, 2022, 369, 130961.	8.2	11
2	Complexation of pea protein isolate with dextran sulphate and interfacial adsorption behaviour and O/W emulsion stability at acidic conditions. International Journal of Food Science and Technology, 2022, 57, 2333-2345.	2.7	2
3	Hydrolyzing behaviors of endogenous proteases on proteins in sesame milk and application for producing low-phytate sesame protein hydrolysate. Food Chemistry, 2022, 385, 132617.	8.2	8
4	Formation Mechanism of Hexanal and (<i>E</i>)-2-Hexenal during Soybean [<i>Glycine max</i> (L.) Merr] Processing Based on the Subcellular and Molecular Levels. Journal of Agricultural and Food Chemistry, 2022, 70, 289-300.	5.2	10
5	Characterization of endogenous endopeptidases and exopeptidases and application for the limited hydrolysis of peanut proteins. Food Chemistry, 2021, 345, 128764.	8.2	9
6	Separation, identification and molecular binding mechanism of dipeptidyl peptidase IV inhibitory peptides derived from walnut (Juglans regia L.) protein. Food Chemistry, 2021, 347, 129062.	8.2	41
7	Contributions of ethanol fractionation on the properties of vegetable protein hydrolysates and differences in the characteristics of metal (Ca, Zn, Fe)-chelating peptides. LWT - Food Science and Technology, 2021, 146, 111482.	5.2	9
8	Sesame water-soluble proteins fraction contains endopeptidases and exopeptidases with high activity: A natural source for plant proteases. Food Chemistry, 2021, 353, 129519.	8.2	11
9	Novel strategy for the demulsification of isolated sesame oil bodies by endogenous proteases. JAOCS, Journal of the American Oil Chemists' Society, 2021, 98, 1057-1068.	1.9	4
10	Quality improvement of soymilk as influenced by anaerobic grinding method and calcium addition. Food Bioscience, 2021, 42, 101210.	4.4	13
11	Endopeptidases, exopeptidases, and glutamate decarboxylase in soybean water extract and their in vitro activity. Food Chemistry, 2021, 360, 130026.	8.2	6
12	Effect of pea milk preparation on the quality of non-dairy yoghurts. Food Bioscience, 2021, 44, 101416.	4.4	14
13	Antioxidant and antibacterial activity and in vitro digestion stability of cottonseed protein hydrolysates. LWT - Food Science and Technology, 2020, 118, 108724.	5.2	52
14	(<i>E</i>)-2-Heptenal in Soymilk: A Nonenzymatic Formation Route and the Impact on the Flavor Profile. Journal of Agricultural and Food Chemistry, 2020, 68, 14961-14969.	5.2	11
15	Insights into the antibacterial activity of cottonseed protein-derived peptide against <i>Escherichia coli</i> . Food and Function, 2020, 11, 10047-10057.	4.6	7
16	Fabrication and characterization of resveratrol-loaded gliadin nanoparticles stabilized by gum Arabic and chitosan hydrochloride. LWT - Food Science and Technology, 2020, 129, 109532.	5.2	42
17	Key volatile off-flavor compounds in peas (Pisum sativum L.) and their relations with the endogenous precursors and enzymes using soybean (Glycine max) as a reference. Food Chemistry, 2020, 333, 127469.	8.2	64
18	Effect of soaking conditions on the formation of lipid derived free radicals in soymilk. Food Chemistry, 2020, 315, 126237.	8.2	11

XIANGZHEN KONG

#	Article	IF	CITATIONS
19	Selective Complex Coacervation of Pea Whey Proteins with Chitosan To Purify Main 2S Albumins. Journal of Agricultural and Food Chemistry, 2020, 68, 1698-1706.	5.2	28
20	Effect of high-speed shearing treatment on dehulled walnut proteins. LWT - Food Science and Technology, 2019, 116, 108500.	5.2	34
21	The absence of lipoxygenase and 7S globulin of soybeans and heating temperatures on the properties of soymilks and soy yogurts. LWT - Food Science and Technology, 2019, 115, 108431.	5.2	27
22	Effects of water absorption of soybean seed on the quality of soymilk and the release of flavor compounds. RSC Advances, 2019, 9, 2906-2918.	3.6	31
23	Improving the stability of wheat gliadin nanoparticles – Effect of gum arabic addition. Food Hydrocolloids, 2018, 80, 78-87.	10.7	91
24	Distribution of odour compounds, antinutritional factors and selected storage stability parameters in soymilk as affected by differences in roasting temperatures and times. Journal of Food Measurement and Characterization, 2018, 12, 1695-1706.	3.2	10
25	Protein Separation Coacervation with Carboxymethyl Cellulose of Different Substitution Degree: Noninteracting Behavior of Bowman–Birk Chymotrypsin Inhibitor. Journal of Agricultural and Food Chemistry, 2018, 66, 4439-4448.	5.2	8
26	A two-chain aspartic protease present in seeds with high affinity for peanut oil bodies. Food Chemistry, 2018, 241, 443-451.	8.2	25
27	Effect of soybean roasting on soymilk sensory properties. British Food Journal, 2018, 120, 2832-2842.	2.9	19
28	Selective Extraction and Antioxidant Properties of Thiol-Containing Peptides in Soy Glycinine Hydrolysates. Molecules, 2018, 23, 1909.	3.8	4
29	Effects of Disulfide Bond Reduction on the Conformation and Trypsin/Chymotrypsin Inhibitor Activity of Soybean Bowman-Birk Inhibitor. Journal of Agricultural and Food Chemistry, 2017, 65, 2461-2467.	5.2	18
30	An advance for removing antinutritional protease inhibitors: Soybean whey purification of Bowman-Birk chymotrypsin inhibitor by combination of two oppositely charged polysaccharides. Carbohydrate Polymers, 2017, 164, 349-357.	10.2	3
31	Microstructure and model solute transport properties of transglutaminaseâ€induced soya protein gels: effect of enzyme dosage, protein composition and solute size. International Journal of Food Science and Technology, 2017, 52, 1527-1533.	2.7	3
32	Heat-induced inactivation mechanism of soybean Bowman-Birk inhibitors. Food Chemistry, 2017, 232, 712-720.	8.2	14
33	Optimization of soybean roasting parameters in developing nutritious and lipoxygenase free soymilk. Journal of Food Measurement and Characterization, 2017, 11, 1899-1908.	3.2	16
34	Characteristics of soy protein isolate/gum arabic-stabilized oil-in-water emulsions: influence of different preparation routes and pH. RSC Advances, 2017, 7, 31875-31885.	3.6	28
35	Soybean P34 Probable Thiol Protease Probably Has Proteolytic Activity on Oleosins. Journal of Agricultural and Food Chemistry, 2017, 65, 5741-5750.	5.2	9
36	Protein Selectivity Controlled by Polymer Charge Density and Protein Yield: Carboxylated Polysaccharides versus Sulfated Polysaccharides. Journal of Agricultural and Food Chemistry, 2016, 64, 9054-9062.	5.2	17

XIANGZHEN KONG

#	Article	IF	CITATIONS
37	Effect of 7S/11S ratio on the network structure of heat-induced soy protein gels: a study of probe release. RSC Advances, 2016, 6, 101981-101987.	3.6	18
38	Effects of pH on protein components of extracted oil bodies from diverse plant seeds and endogenous protease-induced oleosin hydrolysis. Food Chemistry, 2016, 200, 125-133.	8.2	46
39	Behaviors of particle size and bound proteins of oil bodies in soymilk processing. Food Chemistry, 2016, 194, 881-890.	8.2	25
40	Effects of heat treatment on the emulsifying properties of pea proteins. Food Hydrocolloids, 2016, 52, 301-310.	10.7	245
41	Microencapsulation of flaxseed oil by soya proteins–gum arabic complex coacervation. International Journal of Food Science and Technology, 2015, 50, 1785-1791.	2.7	21
42	Recovering proteins from potato juice by complexation with natural polyelectrolytes. International Journal of Food Science and Technology, 2015, 50, 2160-2167.	2.7	6
43	The characterization of soybean oil body integral oleosin isoforms and the effects of alkaline pH on them. Food Chemistry, 2015, 177, 288-294.	8.2	56
44	Solubilization of proteins in extracted oil bodies by SDS: A simple and efficient protein sample preparation method for Tricine–SDS–PAGE. Food Chemistry, 2015, 181, 179-185.	8.2	30
45	Heavy Metal Complexation of Thiol-Containing Peptides from Soy Glycinin Hydrolysates. International Journal of Molecular Sciences, 2015, 16, 8040-8058.	4.1	23
46	Release Behavior of Non-Network Proteins and Its Relationship to the Structure of Heat-Induced Soy Protein Gels. Journal of Agricultural and Food Chemistry, 2015, 63, 4211-4219.	5.2	38
47	Analysis Using Fluorescence Labeling and Mass Spectrometry of Disulfide-Mediated Interactions of Soy Protein When Heated. Journal of Agricultural and Food Chemistry, 2015, 63, 3524-3533.	5.2	15
48	Effects of Phytase-Assisted Processing Method on Physicochemical and Functional Properties of Soy Protein Isolate. Journal of Agricultural and Food Chemistry, 2014, 62, 10989-10997.	5.2	20
49	The properties and the related protein behaviors of oil bodies in soymilk preparation. European Food Research and Technology, 2014, 239, 463-471.	3.3	22
50	Heat-induced inactivation mechanisms of Kunitz trypsin inhibitor and Bowman-Birk inhibitor in soymilk processing. Food Chemistry, 2014, 154, 108-116.	8.2	74
51	Heat-induced aggregation and sulphydryl/disulphide reaction products of soy protein with different sulphydryl contents. Food Chemistry, 2014, 156, 14-22.	8.2	47
52	Stable Mixed Beverage is Produced from Walnut Milk and Raw Soymilk by Homogenization with Subsequent Heating. Food Science and Technology Research, 2014, 20, 583-591.	0.6	16
53	Charge Compensation, Phase Diagram, and Protein Aggregation in Soy Protein–Gum Arabic Complex Formation. Journal of Agricultural and Food Chemistry, 2013, 61, 3934-3940.	5.2	34
54	Covalent immobilization of hydroperoxide lyase on chitosan hybrid hydrogels and production of C6 aldehydes by immobilized enzyme. Journal of Molecular Catalysis B: Enzymatic, 2013, 95, 89-98.	1.8	24

XIANGZHEN KONG

#	Article	IF	CITATIONS
55	Production of (2E)-hexenal by a hydroperoxide lyase from Amaranthus tricolor and salt-adding steam distillation for the separation. European Food Research and Technology, 2012, 235, 783-792.	3.3	5
56	Effect of heat treatment on the properties of soy proteinâ€stabilised emulsions. International Journal of Food Science and Technology, 2011, 46, 1554-1560.	2.7	32
57	Continuous hydrolysis of modified wheat gluten in an enzymatic membrane reactor. Journal of the Science of Food and Agriculture, 2011, 91, 2799-2805.	3.5	24
58	Purification and characterization of hydroperoxide lyase from amaranth tricolor (Amaranthus) Tj ETQq0 0 0 rgBT	Oyerlock	10 Tf 50 622

59	Research and Technology, 2009, 229, 771-778.	3.3	23
60	Preparation of wheat gluten hydrolysates with high opioid activity. European Food Research and Technology, 2008, 227, 511-517.	3.3	9
61	Preparation and antioxidant activity of wheat gluten hydrolysates (WGHs) using ultrafiltration membranes. Journal of the Science of Food and Agriculture, 2008, 88, 920-926.	3.5	44
62	Enzymatic preparation of immunomodulating hydrolysates from soy proteins. Bioresource Technology, 2008, 99, 8873-8879.	9.6	131
63	Effect of lipoxygenase activity in defatted soybean flour on the gelling properties of soybean protein isolate. Food Chemistry, 2008, 106, 1093-1099.	8.2	34