Thomas E Mallouk

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9383362/publications.pdf

Version: 2024-02-01

467 papers

58,840 citations

129 h-index 229 g-index

498 all docs 498 docs citations

498 times ranked

47519 citing authors

#	Article	IF	CITATIONS
1	Layer-by-Layer Assembly of Ultrathin Composite Films from Micron-Sized Graphite Oxide Sheets and Polycations. Chemistry of Materials, 1999, 11, 771-778.	6.7	3,066
2	Catalytic Nanomotors:Â Autonomous Movement of Striped Nanorods. Journal of the American Chemical Society, 2004, 126, 13424-13431.	13.7	1,805
3	Remediation of Cr(VI) and Pb(II) Aqueous Solutions Using Supported, Nanoscale Zero-valent Iron. Environmental Science & Enviro	10.0	1,097
4	Transition Metal Dichalcogenides and Beyond: Synthesis, Properties, and Applications of Single- and Few-Layer Nanosheets. Accounts of Chemical Research, 2015, 48, 56-64.	15.6	1,089
5	Visible Light Water Splitting Using Dye-Sensitized Oxide Semiconductors. Accounts of Chemical Research, 2009, 42, 1966-1973.	15.6	957
6	Combinatorial Electrochemistry: A Highly Parallel, Optical Screening Method for Discovery of Better Electrocatalysts. Science, 1998, 280, 1735-1737.	12.6	919
7	Electric-field assisted assembly and alignment of metallic nanowires. Applied Physics Letters, 2000, 77, 1399-1401.	3.3	876
8	Photoassisted Overall Water Splitting in a Visible Light-Absorbing Dye-Sensitized Photoelectrochemical Cell. Journal of the American Chemical Society, 2009, 131, 926-927.	13.7	841
9	A Facile and Template-Free Hydrothermal Synthesis of Mn ₃ O ₄ Nanorods on Graphene Sheets for Supercapacitor Electrodes with Long Cycle Stability. Chemistry of Materials, 2012, 24, 1158-1164.	6.7	728
10	Perovskites by Design:Â A Toolbox of Solid-State Reactions. Chemistry of Materials, 2002, 14, 1455-1471.	6.7	625
11	Ordered Mesoporous Polymers of Tunable Pore Size from Colloidal Silica Templates. Science, 1999, 283, 963-965.	12.6	617
12	Layered metal phosphates and phosphonates: from crystals to monolayers. Accounts of Chemical Research, 1992, 25, 420-427.	15.6	605
13	Fast and Efficient Preparation of Exfoliated 2H MoS ₂ Nanosheets by Sonication-Assisted Lithium Intercalation and Infrared Laser-Induced 1T to 2H Phase Reversion. Nano Letters, 2015, 15, 5956-5960.	9.1	603
14	Autonomous Motion of Metallic Microrods Propelled by Ultrasound. ACS Nano, 2012, 6, 6122-6132.	14.6	597
15	Polymer–inorganic solid–electrolyte interphase for stable lithium metal batteries under lean electrolyte conditions. Nature Materials, 2019, 18, 384-389.	27.5	587
16	Small power: Autonomous nano- and micromotors propelled by self-generated gradients. Nano Today, 2013, 8, 531-554.	11.9	586
17	Layer-by-Layer Assembly of Intercalation Compounds and Heterostructures on Surfaces: Toward Molecular "Beaker" Epitaxy. Journal of the American Chemical Society, 1994, 116, 8817-8818.	13.7	573
18	Standing Wave Enhancement of Red Absorbance and Photocurrent in Dye-Sensitized Titanium Dioxide Photoelectrodes Coupled to Photonic Crystals. Journal of the American Chemical Society, 2003, 125, 6306-6310.	13.7	564

#	Article	IF	Citations
19	Turning Down the Heat: Design and Mechanism in Solid-State Synthesis. Science, 1993, 259, 1558-1564.	12.6	535
20	Optical properties of coupled metallic nanorods for field-enhanced spectroscopy. Physical Review B, 2005, 71, .	3.2	534
21	Controlled Synthesis and Transfer of Large-Area WS ₂ Sheets: From Single Layer to Few Layers. ACS Nano, 2013, 7, 5235-5242.	14.6	534
22	Hydrodechlorination of Trichloroethylene to Hydrocarbons Using Bimetallic Nickelâ^'Iron Nanoparticles. Chemistry of Materials, 2002, 14, 5140-5147.	6.7	526
23	Chemical Locomotion. Angewandte Chemie - International Edition, 2006, 45, 5420-5429.	13.8	524
24	Delivery Vehicles for Zerovalent Metal Nanoparticles in Soil and Groundwater. Chemistry of Materials, 2004, 16, 2187-2193.	6.7	511
25	Design and development of photoanodes for water-splitting dye-sensitized photoelectrochemical cells. Chemical Society Reviews, 2013, 42, 2357-2387.	38.1	495
26	Orthogonal Self-Assembly on Colloidal Gold-Platinum Nanorods. Advanced Materials, 1999, 11, 1021-1025.	21.0	476
27	Bipolar Electrochemical Mechanism for the Propulsion of Catalytic Nanomotors in Hydrogen Peroxide Solutions. Langmuir, 2006, 22, 10451-10456.	3.5	461
28	Catalytic Nanomotors: Remote-Controlled Autonomous Movement of Striped Metallic Nanorods. Angewandte Chemie - International Edition, 2005, 44, 744-746.	13.8	432
29	Schooling Behavior of Lightâ€Powered Autonomous Micromotors in Water. Angewandte Chemie - International Edition, 2009, 48, 3308-3312.	13.8	424
30	Sensitized layered metal oxide semiconductor particles for photochemical hydrogen evolution from nonsacrificial electron donors. The Journal of Physical Chemistry, 1993, 97, 11802-11810.	2.9	418
31	Inorganic analogs of Langmuir-Blodgett films: adsorption of ordered zirconium 1,10-decanebisphosphonate multilayers on silicon surfaces. Journal of the American Chemical Society, 1988, 110, 618-620.	13.7	404
32	Structural and Electrochemical Characterization of Binary, Ternary, and Quaternary Platinum Alloy Catalysts for Methanol Electro-oxidation1. Journal of Physical Chemistry B, 1998, 102, 9997-10003.	2.6	395
33	Motility of Catalytic Nanoparticles through Self-Generated Forces. Chemistry - A European Journal, 2005, 11, 6462-6470.	3.3	395
34	Catalytically Induced Electrokinetics for Motors and Micropumps. Journal of the American Chemical Society, 2006, 128, 14881-14888.	13.7	384
35	New First Order Raman-active Modes in Few Layered Transition Metal Dichalcogenides. Scientific Reports, 2014, 4, 4215.	3.3	367
36	Electrochemical Growth of Single-Crystal Metal Nanowires via a Two-Dimensional Nucleation and Growth Mechanism. Nano Letters, 2003, 3, 919-923.	9.1	362

#	Article	IF	Citations
37	Carbothermal Synthesis of Carbon-supported Nanoscale Zero-valent Iron Particles for the Remediation of Hexavalent Chromium. Environmental Science & Environmental Science & 2008, 42, 2600-2605.	10.0	335
38	Divide and conquer. Nature Chemistry, 2013, 5, 362-363.	13.6	335
39	Individual Single-Walled Nanotubes and Hydrogels Made by Oxidative Exfoliation of Carbon Nanotube Ropes. Journal of the American Chemical Society, 2003, 125, 9761-9769.	13.7	331
40	Electron Transfer in Self-Assembled Inorganic Polyelectrolyte/Metal Nanoparticle Heterostructures. Journal of the American Chemical Society, 1996, 118, 7640-7641.	13.7	328
41	Nanowires as Building Blocks for Self-Assembling Logic and Memory Circuits. Chemistry - A European Journal, 2002, 8, 4354-4363.	3.3	302
42	DNA-Directed Assembly of Gold Nanowires on Complementary Surfaces. Advanced Materials, 2001, 13, 249-254.	21.0	297
43	Development of Supported Bifunctional Electrocatalysts for Unitized Regenerative Fuel Cells. Journal of the Electrochemical Society, 2002, 149, A1092.	2.9	295
44	Combinatorial Discovery of Alloy Electrocatalysts for Amperometric Glucose Sensors. Analytical Chemistry, 2001, 73, 1599-1604.	6.5	294
45	Adsorption of ordered zirconium phosphonate multilayer films on silicon and gold surfaces. The Journal of Physical Chemistry, 1988, 92, 2597-2601.	2.9	288
46	Powering Nanorobots. Scientific American, 2009, 300, 72-77.	1.0	285
47	A High Yield Synthesis of Ligand-Free Iridium Oxide Nanoparticles with High Electrocatalytic Activity. Journal of Physical Chemistry Letters, 2011, 2, 402-406.	4.6	282
48	Acoustic Propulsion of Nanorod Motors Inside Living Cells. Angewandte Chemie - International Edition, 2014, 53, 3201-3204.	13.8	281
49	Improving the efficiency of water splitting in dye-sensitized solar cells by using a biomimetic electron transfer mediator. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 15612-15616.	7.1	280
50	Increasing the Conversion Efficiency of Dye-Sensitized TiO2 Photoelectrochemical Cells by Coupling to Photonic Crystals. Journal of Physical Chemistry B, 2005, 109, 6334-6342.	2.6	279
51	Layer-by-Layer Assembly of Thin Film Zener Diodes from Conducting Polymers and CdSe Nanoparticles. Journal of the American Chemical Society, 1998, 120, 7848-7859.	13.7	277
52	Photocatalytic Water Oxidation in a Buffered Tris(2,2â€~-bipyridyl)ruthenium Complex-Colloidal IrO2 System. Journal of Physical Chemistry A, 2000, 104, 5275-5280.	2.5	273
53	Prying Apart Ruddlesdenâ^'Popper Phases:Â Exfoliation into Sheets and Nanotubes for Assembly of Perovskite Thin Films. Chemistry of Materials, 2000, 12, 3427-3434.	6.7	270
54	From One to Many: Dynamic Assembly and Collective Behavior of Self-Propelled Colloidal Motors. Accounts of Chemical Research, 2015, 48, 1938-1946.	15.6	267

#	Article	IF	CITATIONS
55	Molecular Recognition in Lamellar Solids and Thin Films. Accounts of Chemical Research, 1998, 31, 209-217.	15.6	266
56	Synthesis and structural characterization of a homologous series of divalent-metal phosphonates, MII(O3PR).cntdot.H2O and MII(HO3PR)2. Inorganic Chemistry, 1988, 27, 2781-2785.	4.0	265
57	Electrolysis of Gaseous CO ₂ to CO in a Flow Cell with a Bipolar Membrane. ACS Energy Letters, 2018, 3, 149-154.	17.4	265
58	Interfacial Chemistry Regulation via a Skin-Grafting Strategy Enables High-Performance Lithium-Metal Batteries. Journal of the American Chemical Society, 2017, 139, 15288-15291.	13.7	255
59	Surface Chemistry and Electrochemistry of Supported Zerovalent Iron Nanoparticles in the Remediation of Aqueous Metal Contaminants. Chemistry of Materials, 2001, 13, 479-486.	6.7	252
60	Nanoscale Tubules Formed by Exfoliation of Potassium Hexaniobate. Chemistry of Materials, 2000, 12, 1556-1562.	6.7	251
61	Characterization of Zirconium Phosphate/Polycation Thin Films Grown by Sequential Adsorption Reactions. Chemistry of Materials, 1997, 9, 1414-1421.	6.7	249
62	Ordered SBA-15 Nanorod Arrays Inside a Porous Alumina Membrane. Journal of the American Chemical Society, 2004, 126, 8650-8651.	13.7	246
63	Rapid Charge Transport in Dyeâ€Sensitized Solar Cells Made from Vertically Aligned Singleâ€Crystal Rutile TiO ₂ Nanowires. Angewandte Chemie - International Edition, 2012, 51, 2727-2730.	13.8	244
64	Photoinduced Energy and Electron Transfer Reactions in Lamellar Polyanion/Polycation Thin Films: Toward an Inorganic "Leaf― Journal of the American Chemical Society, 1999, 121, 3435-3445.	13.7	243
65	Electrolysis of CO ₂ to Syngas in Bipolar Membrane-Based Electrochemical Cells. ACS Energy Letters, 2016, 1, 1149-1153.	17.4	235
66	Templated Surface Sol–Gel Synthesis of SiO2 Nanotubes and SiO2-Insulated Metal Nanowires. Advanced Materials, 2003, 15, 780-785.	21.0	231
67	Understanding the Efficiency of Autonomous Nano- and Microscale Motors. Journal of the American Chemical Society, 2013, 135, 10557-10565.	13.7	230
68	Demonstration of a shell-core structure in layered cadmium selenide-zinc selenide small particles by x-ray photoelectron and Auger spectroscopies. The Journal of Physical Chemistry, 1992, 96, 3812-3817.	2.9	229
69	Self-powered enzyme micropumps. Nature Chemistry, 2014, 6, 415-422.	13.6	228
70	Electron-Transfer Reactions of Ruthenium Trisbipyridyl-Viologen Donor-Acceptor Molecules: Comparison of the Distance Dependence of Electron Transfer-Rates in the Normal and Marcus Inverted Regions. Journal of the American Chemical Society, 1994, 116, 4786-4795.	13.7	226
71	Fluoride ion affinities of germanium tetrafluoride and boron trifluoride from thermodynamic and structural data for (SF3)2GeF6, ClO2GeF5, and ClO2BF4. Inorganic Chemistry, 1984, 23, 3167-3173.	4.0	222
72	Effect of Micropore Topology on the Structure and Properties of Zeolite Polymer Replicas. Chemistry of Materials, 1997, 9, 2448-2458.	6.7	222

#	Article	IF	Citations
73	Layer-by-Layer Growth and Condensation Reactions of Niobate and Titanoniobate Thin Films. Chemistry of Materials, 1999, 11, 1526-1532.	6.7	221
74	Silicon Nanowire Array Photoelectrochemical Cells. Journal of the American Chemical Society, 2007, 129, 12344-12345.	13.7	215
75	Photoluminescence of Perovskite Nanosheets Prepared by Exfoliation of Layered Oxides, K ₂ Ln ₂ Ti ₃ O ₁₀ , KLnNb ₂ O ₇ , and RbLnTa ₂ O ₇ (Ln: Lanthanide Ion). Journal of the American Chemical Society, 2008, 130, 7052-7059.	13.7	214
76	Excited Excitonic States in 1L, 2L, 3L, and Bulk WSe ₂ Observed by Resonant Raman Spectroscopy. ACS Nano, 2014, 8, 9629-9635.	14.6	207
77	Controlled Exfoliation of MoS ₂ Crystals into Trilayer Nanosheets. Journal of the American Chemical Society, 2016, 138, 5143-5149.	13.7	207
78	Combinatorial discovery of bifunctional oxygen reduction — water oxidation electrocatalysts for regenerative fuel cells. Catalysis Today, 2001, 67, 341-355.	4.4	203
79	3D steerable, acoustically powered microswimmers for single-particle manipulation. Science Advances, 2019, 5, eaax3084.	10.3	199
80	Template Synthesis of Metal Nanowires Containing Monolayer Molecular Junctions. Journal of the American Chemical Society, 2002, 124, 4020-4026.	13.7	198
81	Electrocatalysis in Alkaline Media and Alkaline Membrane-Based Energy Technologies. Chemical Reviews, 2022, 122, 6117-6321.	47.7	195
82	Template-Grown Metal Nanowires. Inorganic Chemistry, 2006, 45, 7555-7565.	4.0	194
83	Interplay between superconductivity and ferromagnetism in crystalline nanowires. Nature Physics, 2010, 6, 389-394.	16.7	194
84	Substrate Catalysis Enhances Single-Enzyme Diffusion. Journal of the American Chemical Society, 2010, 132, 2110-2111.	13.7	193
85	Visible-light photolysis of hydrogen iodide using sensitized layered semiconductor particles. Journal of the American Chemical Society, 1991, 113, 9561-9563.	13.7	192
86	Size quantization effects in cadmium sulfide layers formed by a Langmuir-Blodgett technique. Chemical Physics Letters, 1988, 152, 265-268.	2.6	188
87	Photoinduced Charge Separation in Multilayer Thin Films Grown by Sequential Adsorption of Polyelectrolytes. Journal of the American Chemical Society, 1995, 117, 12879-12880.	13.7	188
88	Resistance and polarization losses in aqueous buffer–membrane electrolytes for water-splitting photoelectrochemical cells. Energy and Environmental Science, 2012, 5, 7582.	30.8	188
89	Coupling of Titania Inverse Opals to Nanocrystalline Titania Layers in Dye-Sensitized Solar Cells. Journal of Physical Chemistry B, 2008, 112, 14415-14421.	2.6	187
90	Formation of quantum-size semiconductor particles in a layered metal phosphonate host lattice. Chemistry of Materials, 1991, 3, 149-156.	6.7	186

#	Article	IF	Citations
91	Tungsten Ditelluride: a layered semimetal. Scientific Reports, 2015, 5, 10013.	3.3	186
92	Growth and characterization of metal(II) alkanebisphosphonate multilayer thin films on gold surfaces. Journal of the American Chemical Society, 1993, 115, 11855-11862.	13.7	185
93	Self-assembly of Tiled Perovskite Monolayer and Multilayer Thin Films. Chemistry of Materials, 2000, 12, 2513-2516.	6.7	180
94	Template Growth of Photoconductive Metalâ^'CdSeâ^'Metal Nanowires. Journal of Physical Chemistry B, 2002, 106, 7458-7462.	2.6	179
95	Enhanced Diffusion due to Active Swimmers at a Solid Surface. Physical Review Letters, 2011, 106, 048102.	7.8	178
96	Morphology of Template-Grown Polyaniline Nanowires and Its Effect on the Electrochemical Capacitance of Nanowire Arrays. Chemistry of Materials, 2008, 20, 5260-5265.	6.7	175
97	Non-oxidative intercalation and exfoliation of graphite by Brønsted acids. Nature Chemistry, 2014, 6, 957-963.	13.6	175
98	Two-Dimensional Metal Oxide Nanosheets as Building Blocks for Artificial Photosynthetic Assemblies. Bulletin of the Chemical Society of Japan, 2019, 92, 38-54.	3.2	175
99	Water splitting dye-sensitized solar cells. Nano Today, 2017, 14, 42-58.	11.9	174
100	Salt-Gel Synthesis of Porous Transition-Metal Oxides. Chemistry of Materials, 1995, 7, 304-313.	6.7	173
101	Niobium Oxide Nanoscrolls as Building Blocks for Dye-Sensitized Hydrogen Production from Water under Visible Light Irradiation. Chemistry of Materials, 2008, 20, 6770-6778.	6.7	173
102	Dissipation in quasi-one-dimensional superconducting single-crystalSnnanowires. Physical Review B, 2005, 71, .	3.2	172
103	Photoinduced electron transfer in covalently linked ruthenium tris(bipyridyl)-viologen molecules: observation of back electron transfer in the Marcus inverted region. Journal of the American Chemical Society, 1992, 114, 8081-8087.	13.7	170
104	A "Mix and Match―lonicâ^'Covalent Strategy for Self-Assembly of Inorganic Multilayer Films. Journal of the American Chemical Society, 1997, 119, 12184-12191.	13.7	166
105	Catalytically powered dynamic assembly of rod-shaped nanomotors and passive tracer particles. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 17744-17749.	7.1	166
106	Optimization of Nano- and Microiron Transport through Sand Columns Using Polyelectrolyte Mixtures. Environmental Science & Env	10.0	159
107	Synthesis and structural characterization of layered calcium and lanthanide phosphonate salts. Inorganic Chemistry, 1990, 29, 2112-2117.	4.0	157
108	Shape-selective intercalation reactions of layered zinc and cobalt phosphonates. Inorganic Chemistry, 1991, 30, 1434-1438.	4.0	155

#	Article	IF	Citations
109	Autonomously Moving Nanorods at a Viscous Interface. Nano Letters, 2006, 6, 66-72.	9.1	154
110	Bidentate Dicarboxylate Capping Groups and Photosensitizers Control the Size of IrO ₂ Nanoparticle Catalysts for Water Oxidation. Journal of Physical Chemistry B, 2007, 111, 6845-6856.	2.6	154
111	Photocatalytic Hydrogen Evolution from Hexaniobate Nanoscrolls and Calcium Niobate Nanosheets Sensitized by Ruthenium(II) Bipyridyl Complexes. Journal of Physical Chemistry C, 2009, 113, 7962-7969.	3.1	152
112	Catalytic Micropumps:Â Microscopic Convective Fluid Flow and Pattern Formation. Journal of the American Chemical Society, 2005, 127, 17150-17151.	13.7	150
113	Chemistry on the Edge: A Microscopic Analysis of the Intercalation, Exfoliation, Edge Functionalization, and Monolayer Surface Tiling Reactions of α-Zirconium Phosphate. Journal of the American Chemical Society, 1998, 120, 10887-10894.	13.7	149
114	Controllable Template Synthesis of Superconducting Zn Nanowires with Different Microstructures by Electrochemical Deposition. Nano Letters, 2005, 5, 1247-1253.	9.1	149
115	Immobilization of DNA on an Aluminum(III) Alkanebisphosphonate Thin Film with Electrogenerated Chemiluminescent Detection. Journal of the American Chemical Society, 1994, 116, 8386-8387.	13.7	146
116	Inter- and Intralayer Energy Transfer in Zirconium Phosphateâ^Poly(allylamine hydrochloride) Multilayers:Â An Efficient Photon Antenna and a Spectroscopic Ruler for Self-Assembled Thin Films. Journal of the American Chemical Society, 1996, 118, 4222-4223.	13.7	146
117	Tunability of the Refractive Index of Gold Nanoparticle Dispersions. Nano Letters, 2007, 7, 3418-3423.	9.1	146
118	Kinetics of Electron Transfer and Oxygen Evolution in the Reaction of [Ru(bpy)3]3+ with Colloidal Iridium Oxide. Journal of Physical Chemistry A, 2004, 108, 9115-9119.	2.5	145
119	Layer-by-Layer Assembly of Rectifying Junctions in and on Metal Nanowires. Journal of Physical Chemistry B, 2001, 105, 8762-8769.	2.6	144
120	Tunable Nanowire Patterning Using Standing Surface Acoustic Waves. ACS Nano, 2013, 7, 3306-3314.	14.6	142
121	Chiral molecular recognition in intercalated zirconium phosphate. Journal of the American Chemical Society, 1992, 114, 7574-7575.	13.7	139
122	Saltâ€Based Organic–Inorganic Nanocomposites: Towards A Stable Lithium Metal/Li ₁₀ GeP ₂ S ₁₂ Solid Electrolyte Interface. Angewandte Chemie - International Edition, 2018, 57, 13608-13612.	13.8	138
123	Renewable electricity storage using electrolysis. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 12558-12563.	7.1	136
124	Bioinspiration in light harvesting and catalysis. Nature Reviews Materials, 2020, 5, 828-846.	48.7	136
125	Long-lived light-induced charge separation in a zeolite L-based molecular triad. Journal of the American Chemical Society, 1988, 110, 8232-8234.	13.7	135
126	Rheotaxis of Bimetallic Micromotors Driven by Chemical–Acoustic Hybrid Power. ACS Nano, 2017, 11, 10591-10598.	14.6	135

#	Article	IF	CITATIONS
127	Nanowire-Based Molecular Monolayer Junctions:Â Synthesis, Assembly, and Electrical Characterization. Journal of Physical Chemistry B, 2004, 108, 2827-2832.	2.6	134
128	Synthetic Nano- and Micromachines in Analytical Chemistry: Sensing, Migration, Capture, Delivery, and Separation. Annual Review of Analytical Chemistry, 2015, 8, 311-333.	5.4	134
129	Sensitization of titanium dioxide and strontium titanate electrodes by ruthenium(II) tris(2,2'-bipyridine-4,4'-dicarboxylic acid) and zinc tetrakis(4-carboxyphenyl)porphyrin: an evaluation of sensitization efficiency for component photoelectrodes in a multipanel device. The Journal of Physical Chemistry, 1988, 92, 1872-1878.	2.9	133
130	Light-to-Chemical Energy Conversion in Lamellar Solids and Thin Films. Inorganic Chemistry, 2005, 44, 6828-6840.	4.0	133
131	Metal-free organic sensitizers for use in water-splitting dye-sensitized photoelectrochemical cells. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 1681-1686.	7.1	133
132	Microtwinning in Template-Synthesized Single-Crystal Metal Nanowires. Journal of Physical Chemistry B, 2004, 108, 841-845.	2.6	130
133	Visible Light Photolysis of Hydrogen Iodide Using Sensitized Layered Metal Oxide Semiconductors:Â The Role of Surface Chemical Modification in Controlling Back Electron Transfer Reactions. Journal of Physical Chemistry B, 1997, 101, 2508-2513.	2.6	129
134	Penetrating the Oxide Barrier in Situ and Separating Freestanding Porous Anodic Alumina Films in One Step. Nano Letters, 2005, 5, 697-703.	9.1	128
135	Direct Deposition of Trivalent Rhodium Hydroxide Nanoparticles onto a Semiconducting Layered Calcium Niobate for Photocatalytic Hydrogen Evolution. Nano Letters, 2008, 8, 794-799.	9.1	128
136	A High-Throughput Optical Screening Method for the Optimization of Colloidal Water Oxidation Catalysts. Journal of the American Chemical Society, 2002, 124, 11114-11121.	13.7	127
137	Reversible intercalation of graphite by fluorine: a new bifluoride, C12HF2, and graphite fluorides, C \times F (5 \times \times 2). Journal of the Chemical Society Chemical Communications, 1983, , 103.	2.0	125
138	Photochemical hydrogen evolution via singlet-state electron-transfer quenching of zinc tetra(N-methyl-4-pyridyl)porphyrin cations in a zeolite L based system. Journal of the American Chemical Society, 1987, 109, 7309-7314.	13.7	125
139	Soft chemistry of ion-exchangeable layered metal oxides. Chemical Society Reviews, 2018, 47, 2401-2430.	38.1	125
140	Electrochemical Characterization of Liquid Phase Exfoliated Two-Dimensional Layers of Molybdenum Disulfide. ACS Applied Materials & Disulfide. ACS	8.0	121
141	Improving the efficiency of CO2 electrolysis by using a bipolar membrane with a weak-acid cation exchange layer. Nature Chemistry, 2021, 13, 33-40.	13.6	121
142	Fabrication of two-dimensional photonic crystals using interference lithography and electrodeposition of CdSe. Applied Physics Letters, 2001, 79, 3392-3394.	3.3	120
143	Synthesis and characterization of superconducting single-crystal Sn nanowires. Applied Physics Letters, 2003, 83, 1620-1622.	3.3	120
144	Scrolled Sheet Precursor Route to Niobium and Tantalum Oxide Nanotubes. Nano Letters, 2007, 7, 2142-2145.	9.1	116

#	Article	IF	CITATIONS
145	Comparison of two- and three-layer restacked Dion–Jacobson phase niobate nanosheets as catalysts for photochemical hydrogen evolution. Journal of Materials Chemistry, 2009, 19, 4813.	6.7	116
146	Visible-light controlled catalytic Cu ₂ O–Au micromotors. Nanoscale, 2017, 9, 75-78.	5.6	116
147	Anodic Deposition of Colloidal Iridium Oxide Thin Films from Hexahydroxyiridate(IV) Solutions. Small, 2011, 7, 2087-2093.	10.0	115
148	Bipolar Membranes Inhibit Product Crossover in CO ₂ Electrolysis Cells. Advanced Sustainable Systems, 2018, 2, 1700187.	5.3	114
149	Density and Shape Effects in the Acoustic Propulsion of Bimetallic Nanorod Motors. ACS Nano, 2016, 10, 4763-4769.	14.6	112
150	General Method of Manipulating Formation, Composition, and Morphology of Solid-Electrolyte Interphases for Stable Li-Alloy Anodes. Journal of the American Chemical Society, 2017, 139, 17359-17367.	13.7	112
151	High Yield Exfoliation of WS ₂ Crystals into 1–2 Layer Semiconducting Nanosheets and Efficient Photocatalytic Hydrogen Evolution from WS ₂ /CdS Nanorod Composites. ACS Applied Materials & Diterraces, 2018, 10, 2810-2818.	8.0	112
152	Removal of Pertechnetate from Simulated Nuclear Waste Streams Using Supported Zerovalent Iron. Chemistry of Materials, 2007, 19, 5703-5713.	6.7	110
153	Enhanced conversion efficiencies for pillar array solar cells fabricated from crystalline silicon with short minority carrier diffusion lengths. Applied Physics Letters, 2010, 96, 213503.	3.3	110
154	A tale of two forces: simultaneous chemical and acoustic propulsion of bimetallic micromotors. Chemical Communications, 2015, 51, 1020-1023.	4.1	110
155	Steering Acoustically Propelled Nanowire Motors toward Cells in a Biologically Compatible Environment Using Magnetic Fields. Langmuir, 2013, 29, 16113-16118.	3.5	107
156	Dynamic Interactions between Fast Microscale Rotors. Journal of the American Chemical Society, 2009, 131, 9926-9927.	13.7	106
157	Dense layers of vertically oriented WO ₃ crystals as anodes for photoelectrochemical water oxidation. Chemical Communications, 2012, 48, 729-731.	4.1	106
158	Template Fabrication of Protein-Functionalized Goldâ-'Polypyrroleâ-'Gold Segmented Nanowires. Chemistry of Materials, 2004, 16, 3431-3438.	6.7	104
159	Assessing the Utility of Bipolar Membranes for use in Photoelectrochemical Waterâ€ s plitting Cells. ChemSusChem, 2014, 7, 3017-3020.	6.8	104
160	Photoinduced Electron Transfer Reactions in Zeolite-Based Donor-Acceptor and Donor-Donor-Acceptor Diads and Triads. Journal of the American Chemical Society, 1994, 116, 10557-10563.	13.7	103
161	Ion-Exchangeable, Electronically Conducting Layered Perovskite Oxyfluorides. Journal of the American Chemical Society, 2009, 131, 9849-9855.	13.7	103
162	An Artificial Z-Scheme Constructed from Dye-Sensitized Metal Oxide Nanosheets for Visible Light-Driven Overall Water Splitting. Journal of the American Chemical Society, 2020, 142, 8412-8420.	13.7	103

#	Article	IF	Citations
163	Self-Assembly of Nanorod Motors into Geometrically Regular Multimers and Their Propulsion by Ultrasound. ACS Nano, 2014, 8, 11053-11060.	14.6	101
164	NanoCell Electronic Memories. Journal of the American Chemical Society, 2003, 125, 13279-13283.	13.7	100
165	Dielectrophoretic assembly and integration of nanowire devices with functional CMOS operating circuitry. Microelectronic Engineering, 2004, 75, 31-42.	2.4	100
166	The balance of electric field and interfacial catalysis in promoting water dissociation in bipolar membranes. Energy and Environmental Science, 2018, 11, 2235-2245.	30.8	100
167	Optical and Electrical Characterizations of Ultrathin Films Self-Assembled from 11-Aminoundecanoic Acid Capped TiO2Nanoparticles and Polyallylamine Hydrochlorideâ€. Langmuir, 2000, 16, 241-246.	3.5	99
168	Exfoliation of layered rutile and perovskite tungstates. Chemical Communications, 2002, , 706-707.	4.1	99
169	Hydrazine Fuels for Bimetallic Catalytic Microfluidic Pumping. Journal of the American Chemical Society, 2007, 129, 7762-7763.	13.7	99
170	Microporous Brookite-Phase Titania Made by Replication of a Metal–Organic Framework. Journal of the American Chemical Society, 2013, 135, 16276-16279.	13.7	98
171	Vectorial electron transport at ion-exchanged zeolite-Y-modified electrodes. The Journal of Physical Chemistry, 1987, 91, 643-648.	2.9	97
172	Raman, infrared and n.m.r. studies of the graphite hydrofluorides C x F 1-Î′(HF) Î′(2 â‰ぬ â‰ぬ). Philosophical Transactions of the Royal Society A, 1985, 314, 179-187.	1.1	96
173	Adsorption of well-ordered zirconium phosphonate multilayer films on high surface area silica. Chemistry of Materials, 1991, 3, 521-527.	6.7	95
174	Distinct photoluminescence and Raman spectroscopy signatures for identifying highly crystalline WS ₂ monolayers produced by different growth methods. Journal of Materials Research, 2016, 31, 931-944.	2.6	95
175	Dielectric Properties of the Lamellar Niobates and Titanoniobates AM2Nb3O10 and ATiNbO5 (A = H, K, M) Tj ETQ 1519-1525.	9q1 1 0.78 6.7	4314 rgBT /(93
176	Two Forces Are Better than One: Combining Chemical and Acoustic Propulsion for Enhanced Micromotor Functionality. Accounts of Chemical Research, 2018, 51, 1948-1956.	15.6	93
177	Flat-Band Potentials of Molecularly Thin Metal Oxide Nanosheets. ACS Applied Materials & Samp; Interfaces, 2016, 8, 11539-11547.	8.0	92
178	Photoassisted hydrogen generation: platinum and cadmium sulfide supported on separate particles. The Journal of Physical Chemistry, 1987, 91, 3316-3320.	2.9	91
179	Photocatalytic Oxidation of Water by Silica-Supported Tris(4,4 -dialkyl-2,2 -bipyridyl)ruthenium Polymeric Sensitizers and Colloidal Iridium Oxide. Chemistry of Materials, 2001, 13, 4668-4675.	6.7	91
180	Topochemical Synthesis of Three-Dimensional Perovskites from Lamellar Precursors. Journal of the American Chemical Society, 2000, 122, 2798-2803.	13.7	89

#	Article	IF	Citations
181	Calcium Niobate Nanosheets Prepared by the Polymerized Complex Method as Catalytic Materials for Photochemical Hydrogen Evolution. Chemistry of Materials, 2009, 21, 3611-3617.	6.7	89
182	Reversible Intercalation of Hexagonal Boron Nitride with BrÃ,nsted Acids. Journal of the American Chemical Society, 2013, 135, 8372-8381.	13.7	88
183	Electrical Transport and Chemical Sensing Properties of Individual Conducting Polymer Nanowires. Nano Letters, 2008, 8, 4653-4658.	9.1	86
184	Room temperature negative differential resistance in molecular nanowires. Journal of Materials Chemistry, 2002, 12, 2927-2930.	6.7	83
185	Layer-by-layer self-assembly strategy for template synthesis of nanoscale devices. Materials Science and Engineering C, 2002, 19, 255-262.	7.3	82
186	Nanowire p-n Heterojunction Diodes Made by Templated Assembly of Multilayer Carbon-Nanotube/Polymer/Semiconductor-Particle Shells around Metal Nanowires. Advanced Materials, 2005, 17, 187-192.	21.0	82
187	Radial junction silicon wire array solar cells fabricated by gold-catalyzed vapor-liquid-solid growth. Applied Physics Letters, 2010, 97, .	3.3	82
188	Tungsten disulfide: a novel hydrogen evolution catalyst for water decomposition. The Journal of Physical Chemistry, 1988, 92, 2311-2315.	2.9	81
189	Growth of lamellar Hofmann clathrate films by sequential ligand exchange reactions: assembling a coordination solid one layer at a time. Journal of the American Chemical Society, 1994, 116, 8374-8375.	13.7	81
190	Kilohertz Rotation of Nanorods Propelled by Ultrasound, Traced by Microvortex Advection of Nanoparticles. ACS Nano, 2014, 8, 8300-8309.	14.6	81
191	Observation of Superconductivity in Granular Bi Nanowires Fabricated by Electrodeposition. Nano Letters, 2006, 6, 2773-2780.	9.1	79
192	Effects of Electron Trapping and Protonation on the Efficiency of Water-Splitting Dye-Sensitized Solar Cells. Journal of the American Chemical Society, 2014, 136, 10974-10982.	13.7	79
193	Structural studies of some new lamellar magnesium, manganese and calcium phosphonates. Solid State lonics, 1988, 26, 63-69.	2.7	78
194	Facile Solvothermal Method for Fabricating Arrays of Vertically Oriented α-Fe ₂ O ₃ Nanowires and Their Application in Photoelectrochemical Water Oxidation. Energy & Description of Energy & Description	5.1	78
195	Electrochemistry of metalloporphyrins and viologens at zeolite Y-modified electrodes: evidence for electron trapping by monomolecular porphyrin layers. The Journal of Physical Chemistry, 1988, 92, 2592-2597.	2.9	77
196	Dynamic electron-transfer quenching of the tris(2,2'-bipyridyl)ruthenium(II) MLCT excited state by intrazeolitic methylviologen ions. The Journal of Physical Chemistry, 1992, 96, 2879-2885.	2.9	77
197	EIS Studies of Porous Oxygen Electrodes with Discrete Particles. Journal of the Electrochemical Society, 2003, 150, E423.	2.9	77
198	Self-assembling trimolecular redox chains at zeolite Y modified electrodes. Inorganic Chemistry, 1989, 28, 178-182.	4.0	76

#	Article	IF	Citations
199	Superconductivity and Quantum Oscillations in Crystalline Bi Nanowire. Nano Letters, 2009, 9, 3196-3202.	9.1	76
200	Shape-Directed Microspinners Powered by Ultrasound. ACS Nano, 2018, 12, 2939-2947.	14.6	74
201	Hydrothermal Growth and Photoelectrochemistry of Highly Oriented, Crystalline Anatase TiO ₂ Nanorods on Transparent Conducting Electrodes. Chemistry of Materials, 2015, 27, 4180-4183.	6.7	7 3
202	Coaxially Gated In-Wire Thin-Film Transistors Made by Template Assembly. Journal of the American Chemical Society, 2004, 126, 12738-12739.	13.7	72
203	Effect of Twinning on the Photoluminescence and Photoelectrochemical Properties of Indium Phosphide Nanowires Grown on Silicon (111). Nano Letters, 2008, 8, 4664-4669.	9.1	72
204	Soft Chemical Conversion of Layered Double Hydroxides to Superparamagnetic Spinel Platelets. Chemistry of Materials, 2008, 20, 2374-2381.	6.7	71
205	Dielectrophoretically assembled polymer nanowires for gas sensing. Sensors and Actuators B: Chemical, 2007, 125, 55-59.	7.8	70
206	Electrochemical measurements of electron transfer rates through zirconium 1,2-ethanediylbis(phosphonate) multilayer films on gold electrodes. Langmuir, 1991, 7, 2362-2369.	3.5	69
207	Anodic Electrodeposition of Highly Oriented Zirconium Phosphate and Polyaniline-Intercalated Zirconium Phosphate Films. Journal of the American Chemical Society, 2006, 128, 16634-16640.	13.7	69
208	Photochemical Charge Transfer and Hydrogen Evolution Mediated by Oxide Semiconductor Particles in Zeolite-Based Molecular Assemblies. Journal of Physical Chemistry B, 1997, 101, 2491-2500.	2.6	67
209	Self-Assembled Diode Junctions Prepared from a Ruthenium Tris(Bipyridyl) Polymer, n-Type TiO2 Nanoparticles, and Graphite Oxide Sheets. Advanced Materials, 2000, 12, 1363-1366.	21.0	67
210	Surface Solâ^'Gel Synthesis of Ultrathin Semiconductor Films. Chemistry of Materials, 2000, 12, 383-389.	6.7	67
211	Direct fabrication of two-dimensional titania arrays using interference photolithography. Applied Physics Letters, 2001, 79, 3332-3334.	3.3	67
212	Microstructure and Interdiffusion of Template-Synthesized Au/Sn/Au Junction Nanowires. Nano Letters, 2004, 4, 1313-1318.	9.1	67
213	Electrochemistry and photoelectrochemistry of transition metal complexes in well-ordered surface layers. Coordination Chemistry Reviews, 1990, 97, 237-248.	18.8	66
214	Proximity-Induced Superconductivity in Nanowires: Minigap State and Differential Magnetoresistance Oscillations. Physical Review Letters, 2009, 102, 247003.	7.8	65
215	Topochemical diacetylene polymerization in layered metal phosphate salts. Journal of Solid State Chemistry, 1991, 94, 59-71.	2.9	64
216	The pH-sensitive tungsten(VI) oxide-based microelectrochemical transistors. The Journal of Physical Chemistry, 1987, 91, 648-654.	2.9	63

#	Article	IF	CITATIONS
217	Metallotexaphyrins: a new family of photosensitisers for efficient generation of singlet oxygen. Journal of the Chemical Society Chemical Communications, 1989, , 314.	2.0	63
218	New photochemical method for selective fluorination of organic molecules. Journal of the American Chemical Society, 1990, 112, 2016-2018.	13.7	62
219	NSOM Investigations of the Spectroscopy and Morphology of Self-Assembled Multilayered Thin Films. Journal of Physical Chemistry B, 1998, 102, 9451-9460.	2.6	62
220	Ultrathin Anisotropic Films Assembled from Individual Single-Walled Carbon Nanotubes and Amine Polymers. Journal of Physical Chemistry B, 2005, 109, 2540-2545.	2.6	62
221	Electron transfer kinetics in water splitting dye-sensitized solar cells based on core–shell oxide electrodes. Faraday Discussions, 2012, 155, 165-176.	3.2	62
222	Photoactivity of ternary lead-group IVB oxides for hydrogen and oxygen evolution. Catalysis Letters, 1990, 5, 61-66.	2.6	61
223	Designer solids and surfaces. Journal of Chemical Education, 1990, 67, 829.	2.3	61
224	Photocatalytic water oxidation by Nafion-stabilized iridium oxide colloids. Chemical Communications, 2000, , 1903-1904.	4.1	61
225	Charge Transfer Stabilization of Late Transition Metal Oxide Nanoparticles on a Layered Niobate Support. Journal of the American Chemical Society, 2015, 137, 16216-16224.	13.7	60
226	Polymer mesofibres. Journal of Materials Chemistry, 1998, 8, 13-14.	6.7	59
227	Nanoscale Metal Replicas of Colloidal Crystals. Advanced Materials, 2000, 12, 1040-1042.	21.0	59
228	Structural analysis and characterization of layer perovskite oxynitrides made from Dion–Jacobson oxide precursors. Journal of Solid State Chemistry, 2005, 178, 2313-2321.	2.9	59
229	Visible light-driven, magnetically steerable gold/iron oxide nanomotors. Chemical Communications, 2017, 53, 11465-11468.	4.1	59
230	Bipolar titanium dioxide/platinum semiconductor photoelectrodes and multielectrode arrays for unassisted photolytic water splitting. The Journal of Physical Chemistry, 1986, 90, 4604-4607.	2.9	58
231	Wide-range tuning of the titanium dioxide flat-band potential by adsorption of fluoride and hydrofluoric acid. The Journal of Physical Chemistry, 1990, 94, 4276-4280.	2.9	58
232	Self-assembly of three-dimensional photonic-crystals with air-core line defects. Journal of Materials Chemistry, 2002, 12, 3637-3639.	6.7	58
233	Harnessing catalytic pumps for directional delivery of microparticles in microchambers. Nature Communications, 2017, 8, 14384.	12.8	58
234	Bipolar cadmium selenide/cobalt(II) sulfide semiconductor photoelectrode arrays for unassisted photolytic water splitting. The Journal of Physical Chemistry, 1987, 91, 6-8.	2.9	56

#	Article	IF	Citations
235	Molecular Design of Intercalation-Based Sensors. 1. Ammonia Sensing with Quartz Crystal Microbalances Modified by Copper Biphenylbis(phosphonate) Thin Films. Analytical Chemistry, 1997, 69, 679-687.	6.5	56
236	Catalytically Driven Colloidal Patterning and Transport. Journal of Physical Chemistry B, 2006, 110, 24513-24521.	2.6	56
237	Interfacial Bonding Stabilizes Rhodium and Rhodium Oxide Nanoparticles on Layered Nb Oxide and Ta Oxide Supports. Journal of the American Chemical Society, 2014, 136, 5687-5696.	13.7	56
238	Dynamics of Electron Injection in SnO ₂ /TiO ₂ Core/Shell Electrodes for Water-Splitting Dye-Sensitized Photoelectrochemical Cells. Journal of Physical Chemistry Letters, 2016, 7, 2930-2934.	4.6	56
239	Wafer-Scale Fabrication of Micro- to Nanoscale Bubble Swimmers and Their Fast Autonomous Propulsion by Ultrasound. ACS Nano, 2020, 14, 7520-7528.	14.6	56
240	A "Chimie Douce―Sythesis of Perovskite-Type SrTa2O6and SrTa2-xNbxO61. Chemistry of Materials, 1998, 10, 2585-2587.	6.7	55
241	Intercalation of Well-Dispersed Gold Nanoparticles into Layered Oxide Nanosheets through Intercalation of a Polyamine. Journal of the American Chemical Society, 2007, 129, 3064-3065.	13.7	55
242	Electrochemical characterization of surface-bound redox polymers derived from 1,1'-bis[((3-(triethoxysilyl)propyl)amino)carbonyl]cobaltocenium: charge transport, anion binding, and use in photoelectrochemical hydrogen generation. Inorganic Chemistry, 1985, 24, 3119-3126.	4.0	54
243	Chiral Molecular Recognition in a Tripeptide Benzylviologen Cyclophane Host. Journal of Organic Chemistry, 1998, 63, 7663-7669.	3.2	53
244	Low-Cost Laboratory Adaptations for Precollege Students Who Are Blind or Visually Impaired. Journal of Chemical Education, 2008, 85, 243.	2.3	53
245	Visible-light driven Si–Au micromotors in water and organic solvents. Nanoscale, 2017, 9, 11434-11438.	5.6	53
246	Comparison of High-Throughput Electrochemical Methods for Testing Direct Methanol Fuel Cell Anode Electrocatalysts. Journal of the Electrochemical Society, 2005, 152, A594.	2.9	52
247	Molecular Design of Intercalation-Based Sensors. 2. Sensing of Carbon Dioxide in Functionalized Thin Films of Copper Octanediylbis(phosphonate). Analytical Chemistry, 1997, 69, 688-694.	6.5	50
248	KLnTiO4 (Ln=La, Nd, Sm, Eu, Gd, Dy): A New Series of Ruddlesden–Popper Phases Synthesized by lon-Exchange of HLnTiO4. Journal of Solid State Chemistry, 2001, 161, 225-232.	2.9	50
249	Ground- and excited-state spectral and redox properties of cadmium(II) texaphyrin. The Journal of Physical Chemistry, 1989, 93, 8111-8115.	2.9	49
250	Synthesis, Proton Exchange, and Topochemical Dehydration of New Ruddlesden–Popper Tantalates and Titanotantalates. Journal of Solid State Chemistry, 2000, 155, 46-54.	2.9	49
251	Template synthesis of polymer-insulated colloidal gold nanowires with reactive ends. Chemical Communications, 2000, , 2445-2446.	4.1	49
252	Fabrication technique for filling-factor tunable titanium dioxide colloidal crystal replicas. Applied Physics Letters, 2002, 81, 4532-4534.	3.3	49

#	Article	IF	Citations
253	Potassium niobate nanoscrolls incorporating rhodium hydroxide nanoparticles for photocatalytic hydrogen evolution. Journal of Materials Chemistry, 2008, 18, 5982.	6.7	49
254	Utilization of Direct and Diffuse Sunlight in a Dye-Sensitized Solar Cell — Silicon Photovoltaic Hybrid Concentrator System. Journal of Physical Chemistry Letters, 2011, 2, 581-585.	4.6	49
255	Broadband Light Absorption with Multiple Surface Plasmon Polariton Waves Excited at the Interface of a Metallic Grating and Photonic Crystal. ACS Nano, 2013, 7, 4995-5007.	14.6	49
256	Ultrathin nanoparticle ZnS and ZnS: Mn films: surface sol–gel synthesis, morphology, photophysical properties. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2000, 69-70, 411-417.	3.5	48
257	The Emerging Technology of Solar Fuels. Journal of Physical Chemistry Letters, 2010, 1, 2738-2739.	4.6	48
258	Ultrafast Electron Injection Dynamics of Photoanodes for Water-Splitting Dye-Sensitized Photoelectrochemical Cells. Journal of Physical Chemistry C, 2016, 120, 5940-5948.	3.1	48
259	Ultrasmall particles of cadmium selenide and cadmium sulfide formed in Nafion by an ion-dilution technique. The Journal of Physical Chemistry, 1990, 94, 7543-7549.	2.9	47
260	A new approach to the photochemical trifluoromethylation of aromatic compounds. Journal of the Chemical Society Chemical Communications, 1993, , 1359.	2.0	47
261	Dynamics of Electron Recombination and Transport in Water-Splitting Dye-Sensitized Photoanodes. Journal of Physical Chemistry C, 2015, 119, 13858-13867.	3.1	47
262	Wafer-Scale Fabrication of Plasmonic Crystals from Patterned Silicon Templates Prepared by Nanosphere Lithography. Nano Letters, 2013, 13, 2623-2627.	9.1	46
263	Preparative-Scale Separation of Enantiomers Using Intercalated .alphaZirconium Phosphate. Chemistry of Materials, 1995, 7, 1968-1973.	6.7	44
264	Self-assembled thin films from lamellar metal disulfides and organic polymers. Chemical Communications, 1998, , 1563-1564.	4.1	44
265	Interactions Between Suspended Nanowires and Patterned Surfaces. Advanced Functional Materials, 2002, 12, 759-765.	14.9	44
266	Synthesis and characterization of the multi-photon absorption and excited-state properties of a neat liquid 4-propyl 4′-butyl diphenyl acetylene. Journal of Materials Chemistry, 2009, 19, 7525.	6.7	44
267	Template Electrodeposition of Single-Phase p- and n-Type Copper Indium Diselenide (CuInSe2) Nanowire Arrays. ACS Nano, 2011, 5, 3237-3241.	14.6	44
268	Gas sensing properties of single conducting polymer nanowires and the effect of temperature. Nanotechnology, 2009, 20, 434014.	2.6	43
269	Photovoltage Effects of Sintered IrO ₂ Nanoparticle Catalysts in Water-Splitting Dye-Sensitized Photoelectrochemical Cells. Journal of Physical Chemistry C, 2014, 118, 17046-17053.	3.1	43
270	An Easily Fabricated Low-Cost Potentiostat Coupled with User-Friendly Software for Introducing Students to Electrochemical Reactions and Electroanalytical Techniques. Journal of Chemical Education, 2018, 95, 1658-1661.	2.3	43

#	Article	IF	Citations
271	Effect of Oxygen on Linked Ru(bpy)32+â^'Viologen Species and Methylviologen:Â A Reinterpretation of the Electrogenerated Chemiluminescence. Journal of the American Chemical Society, 1997, 119, 10525-10531.	13.7	42
272	Encapsulation of Anionic Dye Molecules by a Swelling Fluoromica through Intercalation of Cationic Polyelectrolytes. Chemistry of Materials, 2007, 19, 79-87.	6.7	42
273	Understanding the Effect of Monomeric Iridium(III/IV) Aquo Complexes on the Photoelectrochemistry of IrO _{<i>x</i>} · <i>n</i> H ₂ O-Catalyzed Water-Splitting Systems. Journal of the American Chemical Society, 2015, 137, 8749-8757.	13.7	41
274	Charge Recombination with Fractional Reaction Orders in Water-Splitting Dye-Sensitized Photoelectrochemical Cells. Journal of the American Chemical Society, 2018, 140, 11647-11654.	13.7	41
275	Stabilization of Intrazeolitic Cadmium Telluride Nanoclusters by Ion Exchange. Chemistry of Materials, 1996, 8, 2121-2127.	6.7	40
276	Influence of Different Iodide Salts on the Performance of Dye-Sensitized Solar Cells Containing Phosphazene-Based Nonvolatile Electrolytes. Journal of Physical Chemistry C, 2010, 114, 15234-15242.	3.1	40
277	Synthesis, Exfoliation, and Electronic/Protonic Conductivity of the Dion–Jacobson Phase Layer Perovskite HLa ₂ TiTa ₂ O ₁₀ . Chemistry of Materials, 2014, 26, 898-906.	6.7	40
278	Reduction at 300 K of NO by CO over supported platinum catalysts. Journal of Catalysis, 1990, 125, 565-567.	6.2	39
279	Electrochemistry and photoelectrochemistry of pillared-clay-modified electrodes. Inorganic Chemistry, 1990, 29, 1531-1535.	4.0	39
280	Autonomously Moving Local Nanoprobes in Heterogeneous Magnetic Fields. Journal of Physical Chemistry C, 2007, 111, 3607-3613.	3.1	39
281	Structural characterization of multilayer metal phosphonate film on silicon using angularâ€dependent xâ€ray photoelectron spectroscopy. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1989, 7, 1608-1613.	2.1	37
282	Atomic and Electronic Structures of WTe ₂ Probed by High Resolution Electron Microscopy and ab Initio Calculations. Journal of Physical Chemistry C, 2016, 120, 8364-8369.	3.1	37
283	Split-Pool Method for Synthesis of Solid-State Material Combinatorial Libraries. ACS Combinatorial Science, 2002, 4, 569-575.	3.3	36
284	Optimization of the absorption efficiency of an amorphous-silicon thin-film tandem solar cell backed by a metallic surface-relief grating. Applied Optics, 2013, 52, 966.	1.8	36
285	Structural studies of salts of cis and trans .mufluoro-bridged polymers of pentafluorogermanate(1-) and of the pentafluorogermanate(1-) monomer. Inorganic Chemistry, 1984, 23, 3160-3166.	4.0	35
286	New solids and surfaces, via coordination chemistry. Materials Chemistry and Physics, 1993, 35, 225-232.	4.0	35
287	Structural Effects in the Protonic/Electronic Conductivity of Dion-Jacobson Phase Niobate and Tantalate Layered Perovskites. Journal of Physical Chemistry C, 2007, 111, 3185-3191.	3.1	35
288	Proton-Induced Trap States, Injection and Recombination Dynamics in Water-Splitting Dye-Sensitized Photoelectrochemical Cells. ACS Applied Materials & Samp; Interfaces, 2016, 8, 16727-16735.	8.0	35

#	Article	IF	Citations
289	Atomically Thin Layers of Graphene and Hexagonal Boron Nitride Made by Solvent Exfoliation of Their Phosphoric Acid Intercalation Compounds. ACS Nano, 2017, 11, 6746-6754.	14.6	35
290	A high throughput optical method for studying compositional effects in electrocatalysts for CO2 reduction. Nature Communications, 2021, 12, 1114.	12.8	35
291	+â^'Photorefractive CdSe and Gold Nanowire-Doped Liquid Crystals and Polymer-Dispersed-Liquid-Crystal Photonic Crystals. Molecular Crystals and Liquid Crystals, 2006, 446, 233-244.	0.9	34
292	Preparation and synthesis of Ag2Se nanowires produced by template directed synthesis. Journal of Materials Chemistry, 2002, 12, 2433-2434.	6.7	33
293	Excitation of multiple surface-plasmon-polariton waves guided by the periodically corrugated interface of a metal and a periodic multilayered isotropic dielectric material. Journal of the Optical Society of America B: Optical Physics, 2012, 29, 704.	2.1	33
294	Emergent Noncentrosymmetry and Piezoelectricity Driven by Oxygen Octahedral Rotations in <i>n< i>= 2 Dion–Jacobson Phase Layer Perovskites. Advanced Functional Materials, 2016, 26, 1930-1937.</i>	14.9	33
295	Surface Superconductivity in Thin Cylindrical Bi Nanowire. Nano Letters, 2015, 15, 1487-1492.	9.1	32
296	Electron and energy transfer as probes of interparticle ion-exchange reactions in zeolite Y. The Journal of Physical Chemistry, 1993, 97, 8650-8655.	2.9	31
297	Anionic Homopolymers Efficiently Target Zerovalent Iron Particles to Hydrophobic Contaminants in Sand Columns. Environmental Science & Environmental S	10.0	30
298	A new method for depositing platinum exclusively on the internal surface of zeolite L. Inorganic Chemistry, 1987, 26, 3825-3827.	4.0	29
299	Photoelectrochemistry and interfacial energetics of titanium dioxide photoelectrodes in fluoride-containing solutions. The Journal of Physical Chemistry, 1990, 94, 423-428.	2.9	29
300	Effects of substituents on the spectral and redox properties of cadmium(II) texaphyrins. Inorganic Chemistry, 1990, 29, 3738-3745.	4.0	29
301	Metal-insulator-semiconductor and metal-insulator-metal devices derived from zirconium phosphonate thin films. Thin Solid Films, 1992, 208, 132-136.	1.8	29
302	Modular Synthesis of π-Acceptor Cyclophanes Derived from 1,4,5,8-Naphthalenetetracarboxylic Diimide and 1,5-Dinitronaphthalene. Journal of Organic Chemistry, 2001, 66, 3027-3034.	3.2	29
303	Gate-modulated conductance of few-layer WSe2 field-effect transistors in the subgap regime: Schottky barrier transistor and subgap impurity states. Applied Physics Letters, 2015, 106, 152104.	3.3	29
304	Artificial photosynthesis in lamellar assemblies of metal poly(pyridyl) complexes and metalloporphyrins. Coordination Chemistry Reviews, 1999, 185-186, 403-416.	18.8	28
305	Improper Inversion Symmetry Breaking and Piezoelectricity through Oxygen Octahedral Rotations in Layered Perovskite Family, Li <i><math>R>TiO₄ (<i>$R> = Rare Earths). Advanced Electronic Materials, 2016, 2, 1500196.$</i></math></i>	5.1	28
306	Balancing Water Dissociation and Current Densities To Enable Sustainable Hydrogen Production with Bipolar Membranes in Microbial Electrolysis Cells. Environmental Science & E	10.0	28

#	Article	IF	Citations
307	Competing Polar and Antipolar Structures in the Ruddlesden–Popper Layered Perovskite Li ₂ SrNb ₂ O ₇ . Chemistry of Materials, 2019, 31, 4418-4425.	6.7	28
308	Enhanced Photocatalytic Reduction of Methyl Viologen by Self-Assembling Ruthenium(II)Poly(Pyridyl) Complexes with L-Lysine Containing Side Chains. Journal of Physical Chemistry B, 2002, 106, 4227-4231.	2.6	27
309	High-Voltage Aqueous Redox Flow Batteries Enabled by Catalyzed Water Dissociation and Acid–Base Neutralization in Bipolar Membranes. ACS Central Science, 2021, 7, 1028-1035.	11.3	27
310	Sensitized polypyrrole-coated semiconducting powders as materials in photosystems for hydrogen generation. Langmuir, 1989, 5, 148-149.	3.5	26
311	Surface Sol–gel Synthesis of Ultrathin Titanium and Tantalum Oxide Films. Journal of Nanoparticle Research, 1999, 1, 43-49.	1.9	26
312	Anisotropic Alignment of Lamellar Potassium Hexaniobate Microcrystals and Nanoscrolls in a Static Magnetic Field. Journal of Physical Chemistry C, 2008, 112, 11280-11285.	3.1	25
313	Electrolyte infiltration in phosphazene-based dye-sensitized solar cells. Journal of Power Sources, 2011, 196, 5223-5230.	7.8	25
314	Experimental excitation of multiple surface-plasmon-polariton waves and waveguide modes in a one-dimensional photonic crystal atop a two-dimensional metal grating. Journal of Nanophotonics, 2015, 9, 093593.	1.0	25
315	Binary Colloidal Crystal Films Grown by Vertical Evaporation of Silica Nanoparticle Suspensions. Langmuir, 2017, 33, 10366-10373.	3.5	25
316	Dye-sensitized photoelectrochemical water oxidation through a buried junction. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 6946-6951.	7.1	25
317	The fluorobasicities of ReF7 and IF7 as measured by the enthalpy change ΔH°(EF7(g) → EF6+(g) + Fâ^'(g)). Journal of Fluorine Chemistry, 1984, 26, 97-116.	1.7	24
318	Modeling of Bipolar Semiconductor Photoelectrode Arrays for Electrolytic Processes. Journal of the Electrochemical Society, 1988, 135, 567-573.	2.9	24
319	Miniaturized electrochemistry. Nature, 1990, 343, 515-516.	27.8	24
320	Hydrothermal synthesis and crystal structures of two novel vanadium oxides containing interlamellar transition metal complexes. Journal of Molecular Structure, 1998, 470, 49-60.	3.6	24
321	2â€Aminobenzenethiolâ€Functionalized Silverâ€Decorated Nanoporous Silicon Photoelectrodes for Selective CO ₂ Reduction. Angewandte Chemie - International Edition, 2020, 59, 11462-11469.	13.8	24
322	Crowns get organized. Nature, 1997, 387, 350-351.	27.8	23
323	Electrical and Spectroscopic Characterization of Molecular Junctions. MRS Bulletin, 2004, 29, 396-402.	3.5	23
324	Planar Light Concentration in Micro-Si Solar Cells Enabled by a Metallic Grating–Photonic Crystal Architecture. ACS Photonics, 2016, 3, 604-610.	6.6	23

#	Article	IF	CITATIONS
325	Catalytic hydrogen evolution properties of nickel-doped tungsten disulfide. The Journal of Physical Chemistry, 1989, 93, 401-403.	2.9	22
326	EIS Studies of Porous Oxygen Electrodes with Discrete Particles. Journal of the Electrochemical Society, 2003, 150, E429.	2.9	22
327	Evidence of local superconductivity in granular Bi nanowires fabricated by electrodeposition. Physical Review B, 2008, 78, .	3.2	22
328	Using Adaptive Tools and Techniques To Teach a Class of Students Who Are Blind or Low-Vision. Journal of Chemical Education, 2009, 86, 587.	2.3	22
329	Catalytically driven assembly of trisegmented metallic nanorods and polystyrene tracer particles. Soft Matter, 2016, 12, 2501-2504.	2.7	22
330	Competing Structural Instabilities in the Ruddlesden–Popper Derivatives HRTiO ₄ (R = Rare) Tj ETC Centrosymmetricity. Chemistry of Materials, 2017, 29, 656-665.	Qq0 0 0 rg 6.7	BT /Overlock 22
331	Excited Carrier Dynamics in a Dye-Sensitized Niobate Nanosheet Photocatalyst for Visible-Light Hydrogen Evolution. ACS Catalysis, 2021, 11, 659-669.	11.2	22
332	A Practical Guide to Analyzing and Reporting the Movement of Nanoscale Swimmers. ACS Nano, 2021, 15, 15446-15460.	14.6	22
333	Voltammetry at polymer-modified stationary and rotating microelectrodes. Application to determination of electron-transfer rates at polymer solution interfaces. The Journal of Physical Chemistry, 1986, 90, 2150-2156.	2.9	21
334	Reductive quenching of ruthenium polypyridyl sensitizers by cyanometalate complexes. Inorganic Chemistry, 1989, 28, 3507-3510.	4.0	21
335	Combinatorial synthesis of modular chiral cyclophanes. Tetrahedron Letters, 1996, 37, 8313-8316.	1.4	21
336	Combined experimental and theoretical DFT study of molecular nanowires negative differential resistance and interaction with gold clusters. European Physical Journal E, 2005, 18, 201-206.	1.6	21
337	Proton-Conducting Films of Nanoscale Ribbons Formed by Exfoliation of the Layer Perovskite H2SrTa2O7. Chemistry of Materials, 2008, 20, 213-219.	6.7	21
338	Chemistry at the Nanoâ^'Bio Interface. Journal of the American Chemical Society, 2009, 131, 7937-7939.	13.7	21
339	Synthesis and Superconductivity of Electrochemically Grown Single-Crystal Aluminum Nanowires. Chemistry of Materials, 2009, 21, 5557-5559.	6.7	21
340	Confined Chemical Fluid Deposition of Ferromagnetic Metalattices. Nano Letters, 2018, 18, 546-552.	9.1	21
341	Electrode-confined catalyst systems for use in optical-to-chemical energy conversion. Journal of Photochemistry and Photobiology, 1985, 29, 71-88.	0.6	20
342	Photochemical properties of ultrathin TiO2 films prepared by chemical vapor deposition. Journal of Photochemistry and Photobiology A: Chemistry, 1989, 50, 283-290.	3.9	20

#	Article	IF	Citations
343	Photochemical addition of perfluoro-n-butyl iodide to alkynes and olefins. Journal of Fluorine Chemistry, 1991, 53, 53-60.	1.7	20
344	Converting a layer perovskite into a non-defective higher-order homologue: topochemical synthesis of Eu2CaTi2O7. Chemical Communications, 2001, , 853-854.	4.1	20
345	Conductive indium-tin oxide nanowire and nanotube arrays made by electrochemically assisted deposition in template membranes: switching between wire and tube growth modes by surface chemical modification of the template. Nanoscale, 2011, 3, 1541.	5.6	20
346	Charge Transfer Dynamics in Aqueous Dye-Sensitized Photoelectrochemical Cells: Implications for Water Splitting Efficiency. Journal of Physical Chemistry C, 2019, 123, 299-305.	3.1	20
347	Bipolar Membranes for Ion Management in (Photo)Electrochemical Energy Conversion. Accounts of Materials Research, 2021, 2, 1156-1166.	11.7	20
348	Bettering nature's solar cells. Nature, 1991, 353, 698-699.	27.8	19
349	Photochemical selective fluorination of organic molecules using mercury (II) fluoride. Journal of Fluorine Chemistry, 1991, 51, 291-294.	1.7	19
350	Recovery of Ammonium and Cesium Ions from Aqueous Waste Streams by Sodium Tetraphenylborate. Industrial & Engineering Chemistry Research, 1999, 38, 4007-4010.	3.7	19
351	pH-Dependent Intercalation of Gold Nanoparticles into a Synthetic Fluoromica Modified with Poly(Allylamine). Chemistry of Materials, 2007, 19, 6588-6596.	6.7	19
352	Buffer layer between a planar optical concentrator and a solar cell. AIP Advances, 2015, 5, .	1.3	19
353	Nano-Dispersed Organic Liquid and Liquid Crystals for All-Time-Scales Optical Switching and Tunable Negative-and Zero- Index Materials. Molecular Crystals and Liquid Crystals, 2008, 485, 934-944.	0.9	18
354	A porphyrin-stabilized iridium oxide water oxidation catalyst. Canadian Journal of Chemistry, 2011, 89, 152-157.	1.1	18
355	An atomic layer deposition reactor with dose quantification for precursor adsorption and reactivity studies. Review of Scientific Instruments, 2013, 84, 014102.	1.3	18
356	Metal phosphonate-based quartz crystal microbalance sensors for amines and ammonia. Sensors and Actuators B: Chemical, 1993, 14, 703-704.	7.8	17
357	Stable metal anodes enabled by a labile organic molecule bonded to a reduced graphene oxide aerogel. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 30135-30141.	7.1	17
358	Hostâ^'Guest Chemistry of a Chiral Cyclohexanediamineâ^'Viologen Cyclophane in Solution and in the Solid State. Chemistry of Materials, 1998, 10, 1937-1944.	6.7	16
359	Electrochemical Synthesis of Multi-Material Nanowires as Building Blocks for Functional Nanostructures. Materials Research Society Symposia Proceedings, 2000, 636, 461.	0.1	16
360	Synthesis, Chemical Modification, and Surface Assembly of Carbon Nanowires. Advanced Functional Materials, 2003, 13, 365-370.	14.9	16

#	Article	IF	CITATIONS
361	Fabrication of TiO2-Organic Hybrid Dot Arrays Using Nanosecond Laser Interference Lithography. Journal of the American Ceramic Society, 2006, 89, 3507-3510.	3.8	16
362	Organophosphates as Solvents for Electrolytes in Electrochemical Devices. ACS Applied Materials & Solvents (2013, 5, 13029-13034.	8.0	16
363	Examining the use of adaptive technologies to increase the hands-on participation of students with blindness or low vision in secondary-school chemistry and physics. Chemistry Education Research and Practice, 2016, 17, 1174-1189.	2.5	16
364	Multicomponent redox catalysts for reduction of large biological molecules using molecular hydrogen as the reductant. Journal of the American Chemical Society, 1988, 110, 2270-2276.	13.7	15
365	Evidence for carbocation intermediates in the titanium dioxide-catalyzed photochemical fluorination of carboxylic acids. Journal of Organic Chemistry, 1993, 58, 1393-1399.	3.2	15
366	Orientation of Diamagnetic Layered Transition Metal Oxide Particles in 1-Tesla Magnetic Fields. Journal of the American Chemical Society, 2011, 133, 1824-1831.	13.7	15
367	Antiproximity effect in aluminum nanowires with no applied magnetic field. Physical Review B, 2011, 83,	3.2	15
368	Synthesis of New Polyelectrolytes via Backbone Quaternization of Poly(aryloxy- and) Tj ETQq0 0 0 rgBT /Overlock	R 19.Tf 50	462 Td (alko 15
369	Periodically multilayered planar optical concentrator for photovoltaic solar cells. Applied Physics Letters, 2013, 103, .	3.3	15
370	Acoustic Manipulation of Dense Nanorods in Microgravity. Microgravity Science and Technology, 2020, 32, 1159-1174.	1.4	15
371	Themed issue on water splitting and photocatalysis. Journal of Materials Chemistry A, 2016, 4, 2764-2765.	10.3	14
372	Achieving Minimal Heat Conductivity by Ballistic Confinement in Phononic Metalattices. ACS Nano, 2020, 14, 4235-4243.	14.6	14
373	Photoelectrochemical Properties of Titanium Dioxide Electrodes Prepared from a Titaniumâ€Aluminum Alloy. Journal of the Electrochemical Society, 1990, 137, 3846-3849.	2.9	13
374	Chemical gating of a molecular bilayer rectifier at clay-modified electrodes. Inorganic Chemistry, 1993, 32, 1454-1459.	4.0	13
375	DNA-Directed Assembly of Anisotropic Nanoparticles on Lithographically Defined Surfaces and in Solution. Materials Research Society Symposia Proceedings, 2001, 635, C6.2.1.	0.1	13
376	Photosensitized production of doubly reduced methylviologen followed by highly efficient methylviologen radical formation using self-assembling ruthenium(ii) complexes. Chemical Communications, 2002, , 1534-1535.	4.1	13
377	NANOMATERIALS: Stretching the Mold. Science, 2001, 291, 443-444.	12.6	13
378	Intercalation of graphite by silicon tetrafluoride and fluorine to yield a second-stage salt C24SiF5. Synthetic Metals, 1984, 9, 433-440.	3.9	12

#	Article	IF	CITATIONS
379	Reaction of the (111) faces of single-crystal indium phosphide with alkylating agents. Evidence for selective reaction of the P-rich face. Journal of the American Chemical Society, 1986, 108, 3155-3157.	13.7	12
380	Photoelectrochemical evolution of elemental fluorine at titanium dioxide electrodes in anhydrous hydrogen fluoride solutions. Journal of the American Chemical Society, 1988, 110, 3710-3712.	13.7	12
381	Zeolitic Materials As Organizing Media For Semiconductor-Based Artificial Photosynthetic Systems. Materials Research Society Symposia Proceedings, 1991, 233, 145.	0.1	12
382	Metallic contacts with individual Ru nanowires prepared by electrochemical deposition and the suppression of superconductivity in ultrasmall Ru grains. Applied Physics Letters, 2004, 84, 5171-5173.	3.3	12
383	Electrochemically Assisted Deposition as a New Route to Transparent Conductive Indium Tin Oxide Films. Chemistry of Materials, 2010, 22, 4939-4949.	6.7	12
384	An Improved Z-Scheme for Overall Water Splitting Using Dye-Sensitized Calcium Niobate Nanosheets Synthesized by a Flux Method. ACS Applied Energy Materials, 2021, 4, 10145-10152.	5.1	12
385	Three-Chamber Design for Aqueous Acid–Base Redox Flow Batteries. ACS Energy Letters, 2022, 7, 908-913.	17.4	12
386	Layer-by-layer assembly and intercalation reactions of iron(III) and iron(II) alkanebisphosphonates on gold surfaces. Chemical Communications, 1996, , 2591.	4.1	11
387	Combinatorial Screening of Anode and Cathode Electrocatalysts for Direct Methanol Fuel Cells. Materials Research Society Symposia Proceedings, 1998, 549, 231.	0.1	11
388	Directed-Sorting Method for Synthesis of Bead-Based Combinatorial Libraries of Heterogeneous Catalysts. ACS Combinatorial Science, 2006, 8, 199-212.	3.3	11
389	Homogeneously dispersed CeO2 nanoparticles on exfoliated hexaniobate nanosheets. Journal of Physics and Chemistry of Solids, 2017, 111, 335-342.	4.0	11
390	Color Tuning of an Acidic Blue Dye by Intercalation into the Basic Interlayer Galleries of a Poly(allylamine)/Synthetic Fluoromica Nanocomposite. Chemistry of Materials, 2009, 21, 985-993.	6.7	10
391	Protonic and electronic conductivity of the layered perovskite oxides HCa2Nb3O10 and Ca4Nb6O19. International Journal of Hydrogen Energy, 2014, 39, 4576-4580.	7.1	10
392	Nondestructive Measurements of the Mechanical and Structural Properties of Nanostructured Metalattices. Nano Letters, 2020, 20, 3306-3312.	9.1	10
393	Purely viscous acoustic propulsion of bimetallic rods. Physical Review Fluids, 2021, 6, .	2.5	10
394	New aspects of the intercalation of graphite by fluorine and fluorides. Journal of Fluorine Chemistry, 1983, 23, 409.	1.7	9
395	Na2Ln2Ti3-xMnxO10(Ln = Sm, Eu, Gd, and Dy; 0 ⩽x⩽ 1): A New Series of Ion-Exchangeable Layered Pero Containing B-Site Manganese. Chemistry of Materials, 2002, 14, 442-448.	vskites 6.7	9
396	Patterned Nanowires of Se and Corresponding Metal Chalcogenides from Patterned Amorphous Se Nanoparticles. Small, 2009, 5, 356-360.	10.0	9

#	Article	IF	CITATIONS
397	A New Synthetic Route to Microporous Silica with Wellâ€Defined Pores by Replication of a Metal–Organic Framework. Chemistry - A European Journal, 2015, 21, 12148-12152.	3.3	9
398	Defect Density-Dependent Electron Injection from Excited-State Ru(II) Tris-Diimine Complexes into Defect-Controlled Oxide Semiconductors. Journal of Physical Chemistry C, 2019, 123, 28310-28318.	3.1	9
399	Artificial Photosynthesis in Zeolite-Based Molecular Assemblies. , 1990, , 365-378.		9
400	A new chiral cyclophane derived from 1,1′-binaphthol and benzylviologen. Tetrahedron Letters, 1995, 36, 7599-7602.	1.4	8
401	Electron Transport in Dye-Sensitized TiO ₂ Nanowire Arrays in Contact with Aqueous Electrolytes. Journal of Physical Chemistry C, 2020, 124, 22003-22010.	3.1	8
402	Photoinduced electron transfer in covalently linked ruthenium tris(bipyridyl)-viologen molecules: observation of back electron transfer in the Marcus inverted region. [Erratum to document cited in CA117(18):183725s]. Journal of the American Chemical Society, 1993, 115, 5348-5348.	13.7	7
403	Ferragels: A New Family of Materials for Remediation of Aqueous Metal ion Solutions. Materials Research Society Symposia Proceedings, 1999, 556, 1269.	0.1	7
404	An Environmentally Focused General Chemistry Laboratory. Journal of Chemical Education, 2006, 83, 250.	2.3	7
405	Oligomeric Ruthenium Polypyridyl Dye for Improved Stability of Aqueous Photoelectrochemical Cells. Journal of Physical Chemistry C, 2020, 124, 3542-3550.	3.1	7
406	Fluorine Intercalation Compounds of Graphiteâ€â€Section I by Watanabe, Touhara, and Nakajima, Section II by Bartlett and Mallouk, and Section III by Selig , 1985, , 331-369.		6
407	Synthesis of Porous Transition Metal Oxides by the Salt-Gel Method. Materials Research Society Symposia Proceedings, 1994, 371, 69.	0.1	6
408	Editorial: Self-assembly and materials research. Supramolecular Science, 1997, 4, 1.	0.7	6
409	Colloidal crystal order and structure revealed by tabletop extreme ultraviolet scattering and coherent diffractive imaging. Optics Express, 2018, 26, 11393.	3.4	6
410	Oxide-Free Three-Dimensional Germanium/Silicon Core–Shell Metalattice Made by High-Pressure Confined Chemical Vapor Deposition. ACS Nano, 2020, 14, 12810-12818.	14.6	6
411	2â€Aminobenzenethiolâ€Functionalized Silverâ€Decorated Nanoporous Silicon Photoelectrodes for Selective CO 2 Reduction. Angewandte Chemie, 2020, 132, 11559-11566.	2.0	6
412	Oxidative Intercalation of Graphite by Fluoroanionic Species. Advances in Chemistry Series, 1989, , 391-402.	0.6	5
413	Septum-based photoelectrochemical cells. The Journal of Physical Chemistry, 1993, 97, 7127-7128.	2.9	5
414	Nanometer-Scale Architecture Using Colloidal Gold. ACS Symposium Series, 1997, , 7-16.	0.5	5

#	Article	IF	CITATIONS
415	NONLINEAR AND ELECTRO-OPTICS OF NANO-DISPERSED NEMATIC LIQUID CRYSTALS WITH TUNABLE NEGATIVE-, ZERO-, AND POSITIVE INDICES. Journal of Nonlinear Optical Physics and Materials, 2007, 16, 381-399.	1.8	5
416	Investigation of superconductivity in electrochemically fabricated AuSn nanowires. Nanotechnology, 2008, 19, 365704.	2.6	5
417	Molecules meet materials. Nature, 2012, 485, 450-451.	27.8	5
418	Ultrafast proton-assisted tunneling through ZrO ₂ in dye-sensitized SnO ₂ -core/ZrO ₂ -shell films. Chemical Communications, 2018, 54, 7971-7974.	4.1	5
419	Saltâ€Based Organic–Inorganic Nanocomposites: Towards A Stable Lithium Metal/Li 10 GeP 2 S 12 Solid Electrolyte Interface. Angewandte Chemie, 2018, 130, 13796-13800.	2.0	5
420	Shape-Selective Intercalation Reactions and Chemical Sensing in Layered Metal Phosphates and Phosphonates., 1993,, 225-236.		5
421	EIS Studies of Porous Oxygen Electrodes with Discrete Particles [J. Electrochem. Soc., 150, E423 (2003)]. Journal of the Electrochemical Society, 2004, 151, L1.	2.9	4
422	Developing Catalytic Nanomotors. , 2007, , 23-37.		4
423	Adaptive Shape Ripening and Interparticle Bridging of <scp>l</scp> -Arginine-Stabilized Silica Nanoparticles during Evaporative Colloidal Crystal Assembly. ACS Applied Materials & mp; Interfaces, 2019, 11, 4568-4577.	8.0	4
424	Silver Adsorption on Calcium Niobate (001) Nanosheets: Calorimetric Energies That Explain Sinter-Resistant Support. Journal of the American Chemical Society, 2020, 142, 15751-15763.	13.7	4
425	Self-Assembling Electron-Transport Chains in Zeolites. ACS Symposium Series, 1992, , 333-346.	0.5	3
426	Photochemically Induced Charge Separation in Electrostatically Constructed Organic-Inorganic Multilayer Composites. Advances in Chemistry Series, 1998, , 359-379.	0.6	3
427	A Scrolled Sheet Precursor Route to Niobium Oxide Nanotubes. Materials Research Society Symposia Proceedings, 2006, 988, 1.	0.1	3
428	Tunable refractive index materials with metallic nano-spheres dispersed in organic liquids. Proceedings of SPIE, 2007, , .	0.8	3
429	Effect of grating period on the excitation of multiple surface-plasmon-polariton waves guided by the interface of a metal grating and a photonic crystal. Proceedings of SPIE, 2013, , .	0.8	3
430	Optimization of a spectrum splitter using differential evolution algorithm for solar cell applications. Journal of Photonics for Energy, 2015, 5, 055099.	1.3	3
431	Quantum transport in three-dimensional metalattices of platinum featuring an unprecedentedly large surface area to volume ratio. Physical Review Materials, 2020, 4, .	2.4	3
432	Shape-Selective Intercalation and Chemical Sensing in Metal Phosphonate Thin Films. ACS Symposium Series, 1994, , 60-70.	0.5	2

#	Article	IF	CITATIONS
433	Assembly of thin Film Dielectrics by Sequential Adsorption Reactions of Unilamellar Inorganic Colloids. Materials Research Society Symposia Proceedings, 1996, 446, 377.	0.1	2
434	Continuous-Flow Process for the Separation of Cesium from Complex Waste Mixtures. Industrial & Engineering Chemistry Research, 2001, 40, 3384-3389.	3.7	2
435	Catalytic Nanomotors: Autonomous Movement of Striped Nanorods ChemInform, 2004, 35, no.	0.0	2
436	Synthesis of an amide cyclophane building block of shape-persistent triangular molecular wedges. Tetrahedron Letters, 2004, 45, 1151-1153.	1.4	2
437	Double Replication of Silica Colloidal Crystal Films. ACS Applied Materials & Double Replication of Silica Colloidal Crystal Films. ACS Applied Materials & Double Replication of Silica Colloidal Crystal Films. ACS Applied Materials & Double Replication of Silica Colloidal Crystal Films. ACS Applied Materials & Double Replication of Silica Colloidal Crystal Films. ACS Applied Materials & Double Replication of Silica Colloidal Crystal Films. ACS Applied Materials & Double Replication of Silica Colloidal Crystal Films. ACS Applied Materials & Double Replication of Silica Colloidal Crystal Films. ACS Applied Materials & Double Replication of Silica Colloidal Crystal Films. ACS Applied Materials & Double Replication of Silica Colloidal Crystal Films. ACS Applied Materials & Double Replication of Silica Colloidal Crystal Films. ACS Applied Materials & Double Replication of Silica Colloidal Crystal Films. ACS Applied Materials & Double Replication of Silica Colloidal Crystal Films. ACS Applied Materials & Double Replication of Silica Colloidal Crystal Films. ACS Applied Materials & Double Replication of Silica Colloidal Crystal Films. ACS Applied Materials & Double Replication of Silica Colloidal Crystal Films. ACS Applied Materials & Double Replication of Silica Colloidal Crystal Films. ACS Applied Materials & Double Replication of Silica Colloidal Crystal Films. ACS Applied Materials & Double Replication of Silica Colloidal Crystal Films. ACS Applied Materials & Double Replication of Silica Colloidal Crystal Films. ACS Applied Materials & Double Replication of Silica Colloidal Crystal Films. ACS Applied Materials & Double Replication of Silica Colloidal Crystal Films. ACS Applied Materials & Double Replication of Silica Colloidal Crystal Films. ACS Applied Materials & Double Replication of Silica Colloidal Crystal Films. ACS Applied Materials & Double Replication of Silica Colloidal Crystal Films. ACS Applied Materials & Double Replication of Silica Colloidal Crystal Films. ACS Applied Material Crystal Films. ACS Ap	8.0	2
438	Random anion distribution in MSxSe2â^'x (M = Mo, W) crystals and nanosheets. RSC Advances, 2018, 8, 9871-9878.	3.6	2
439	A chemical steering wheel for micromotors. National Science Review, 2021, 8, nwab119.	9.5	2
440	Orthogonal Self-Assembly on Colloidal Gold-Platinum Nanorods. , 1999, 11, 1021.		2
441	New salts of graphite, C12+HF2â^' & C24+SiF5â^' and the treshold for the oxidative intercalation of graphite. Journal of Fluorine Chemistry, 1982, 21, 26.	1.7	1
442	Structural, vibrational and thermodynamic studies of pentafluorogermanate salts. Journal of Fluorine Chemistry, 1982, 21, 88.	1.7	1
443	Experiments illustrating metal-insulator transitions in solids. Journal of Chemical Education, 1993, 70, 855.	2.3	1
444	Chemically Sensitive Interfaces. ACS Symposium Series, 1994, , 1-14.	0.5	1
445	Electrofluidic Assembly of Nanoelectromechanical Systems. Materials Research Society Symposia Proceedings, 2001, 687, 1.	0.1	1
446	Nonlinear liquid crystals in periodic structures. , 2001, , .		1
447	Interlayer Charge Conversion Through Intercalation of Polycations into a Synthetic Swelling Mica. Materials Research Society Symposia Proceedings, 2006, 988, 1.	0.1	1
448	Nonlinear liquid crystal Nano-metamaterials. , 2008, , .		1
449	In-situ TEM Study on Size-dependent Thermal Stability of Nickel Filled Silica Nano-Opals. Microscopy and Microanalysis, 2017, 23, 956-957.	0.4	1
450	Investigation of Surface Plasmon Resonances in Silver Infiltrated Metalattices by Monochromated Electron Energy Loss Spectroscopy. Microscopy and Microanalysis, 2018, 24, 432-433.	0.4	1

#	Article	IF	CITATIONS
451	Chemical and Biomolecular Interactions in the Assembly of Nanowires. , 2003, , 235-254.		1
452	Small-Angle X-ray Scattering Analysis of Colloidal Crystals and Replica Materials Made from l-Arginine-Stabilized Silica Nanoparticles. ACS Applied Materials & Enterfaces, 2022, , .	8.0	1
453	Evolution of spectroscopy features in layered MoS _x Se _(2-x) solid solutions. Materials Research Express, 2022, 9, 046301.	1.6	1
454	Managing gas and ion transport in a PTFE fiber-based architecture for alkaline fuel cells. Cell Reports Physical Science, 2022, 3, 100912.	5 . 6	1
455	The relationship between gas phase oxidation strengths and graphite intercalation reactions. Synthetic Metals, 1980, 2, 213.	3.9	0
456	Using nanoporous carbon membranes in fuel cells. Materials Research Society Symposia Proceedings, 2003, 801, 181.	0.1	0
457	Light-to-Chemical Energy Conversion in Lamellar Solids and Thin Films. ChemInform, 2005, 36, no.	0.0	0
458	The Design and Control of Catalytic Motors: Manipulating Colloids and Fluids with Self-Generated Forces. Materials Research Society Symposia Proceedings, 2006, 944, 1.	0.1	0
459	Nanosecond-cw visible-IR all-optical switching and nonlinear transmission with nonlinear organic optical liquids and liquid crystals., 2007,,.		0
460	Lithographically Fabricated 10-Micron Scale Autonomous Motors. Materials Research Society Symposia Proceedings, 2008, 1135, 30901.	0.1	0
461	Whither nanomaterials?. Nanotechnology, 2009, 20, 430207-430207.	2.6	0
462	Excitation of multiple surface-plasmon-polariton waves and waveguide modes in a 1D photonic crystal atop a 2D metal grating. , $2014, \dots$		0
463	Optimization of a spectrum splitter using differential evolution algorithm for solar cell applications. , 2014, , .		0
464	In-situ TEM Study of Formation of an Ordered Hollow Structure Metalattice from Silica Nano-Opals through High-Temperature Annealing. Microscopy and Microanalysis, 2018, 24, 320-321.	0.4	0
465	Plasmonic Metalattices: A Correlated Monochromated Electron Energy Loss Study and Theoretical Calculations. Microscopy and Microanalysis, 2019, 25, 678-679.	0.4	0
466	Template Synthesis and Assembly of Meta lNanowires for Electronic Applications., 2005,, 413-435.		0
467	Modular Assembly of Surface Heterostructures from Inorganic Clusters and Polyelectrolytes. , 1997, , 41-51.		0