
Ingeborg Krägeloh-Mann

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9383229/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Genetic and phenotypic heterogeneity suggest therapeutic implications in SCN2A-related disorders. Brain, 2017, 140, 1316-1336.	3.7	426
2	Decreasing prevalence in cerebral palsy: a multiâ€site European populationâ€based study, 1980 to 2003. Developmental Medicine and Child Neurology, 2016, 58, 85-92.	1.1	354
3	The role of magnetic resonance imaging in elucidating the pathogenesis of cerebral palsy: a systematic review. Developmental Medicine and Child Neurology, 2007, 49, 144-151.	1.1	313
4	Cerebral palsy update. Brain and Development, 2009, 31, 537-544.	0.6	246
5	Imaging of early brain injury and cortical plasticity. Experimental Neurology, 2004, 190, 84-90.	2.0	157
6	BILATERAL SPASTIC CEREBRAL PALSYâ€MRI PATHOLOGY AND ORIGIN. ANALYSIS FROM A REPRESENTATIVE SERIES OF 56 CASES. Developmental Medicine and Child Neurology, 1995, 37, 379-397.	1.1	143
7	Effects of Liberal vs Restrictive Transfusion Thresholds on Survival and Neurocognitive Outcomes in Extremely Low-Birth-Weight Infants. JAMA - Journal of the American Medical Association, 2020, 324, 560.	3.8	134
8	<scp>MRI</scp> classification system (<scp>MRICS</scp>) for children with cerebral palsy: development, reliability, and recommendations. Developmental Medicine and Child Neurology, 2017, 59, 57-64.	1.1	133
9	Recognition of Point-Light Biological Motion Displays by Young Children. Perception, 2001, 30, 925-933.	0.5	122
10	Bilateral lesions of thalamus and basal ganglia: origin and outcome. Developmental Medicine and Child Neurology, 2002, 44, 477-484.	1.1	102
11	Long-term Outcome of Allogeneic Hematopoietic Stem Cell Transplantation in Patients With Juvenile Metachromatic Leukodystrophy Compared With Nontransplanted Control Patients. JAMA Neurology, 2016, 73, 1133.	4.5	94
12	BILATERAL SPASTIC CEREBRAL PALSY—A COMPARATIVE STUDY BETWEEN SOUTHWEST GERMANY AND WESTERN SWEDEN. I: CLINICAL PATTERNS AND DISABILITIES. Developmental Medicine and Child Neurology, 1993, 35, 1037-1047.	1.1	88
13	Postnatal Human Cytomegalovirus Infection in Preterm Infants Has Long-Term Neuropsychological Sequelae. Journal of Pediatrics, 2015, 166, 834-839.e1.	0.9	77
14	The natural course of gross motor deterioration in metachromatic leukodystrophy. Developmental Medicine and Child Neurology, 2011, 53, 850-855.	1.1	74
15	Metachromatic leukodystrophy: natural course of cerebral MRI changes in relation to clinical course. Journal of Inherited Metabolic Disease, 2011, 34, 1095-1102.	1.7	74
16	FAHN/SPG35: a narrow phenotypic spectrum across disease classifications. Brain, 2019, 142, 1561-1572.	3.7	70
17	Development and reliability of a classification system for gross motor function in children with metachromatic leucodystrophy. Developmental Medicine and Child Neurology, 2011, 53, 156-160.	1.1	61
18	Bilateral lesions of thalamus and basal ganglia: origin and outcome. Developmental Medicine and Child Neurology, 2002, 44, 477-84.	1.1	60

#	Article	IF	CITATIONS
19	BILATERAL SPASTIC CEREBRAL PALSYâ€A COLLABORATIVE STUDY BETWEEN SOUTHWEST GERMANY AND WESTERN SWEDEN. III: AETIOLOGY. Developmental Medicine and Child Neurology, 1995, 37, 191-203.	1.1	57
20	Language and cognition in children with metachromatic leukodystrophy: onset and natural course in a nationwide cohort. Orphanet Journal of Rare Diseases, 2014, 9, 18.	1.2	54
21	Association of Age at Onset and First Symptoms With Disease Progression in Patients With Metachromatic Leukodystrophy. Neurology, 2021, 96, e255-e266.	1.5	47
22	PROTON SPECTROSCOPY IN FIVE PATIENTS WITH LEIGH'S DISEASE AND MITOCHONDRIAL ENZYME DEFICIENCY. Developmental Medicine and Child Neurology, 1993, 35, 769-776.	1.1	46
23	CONGENITAL HEMIPARESIS AND PERIVENTRICULAR LEUKOMALACIA PATHOGENETIC ASPECTS ON MAGNETIC RESONANCE IMAGING. Developmental Medicine and Child Neurology, 1994, 36, 943-950.	1.1	46
24	Safety of intrathecal delivery of recombinant human arylsulfatase A in children with metachromatic leukodystrophy: Results from a phase 1/2 clinical trial. Molecular Genetics and Metabolism, 2020, 131, 235-244.	0.5	43
25	The Mutation Matters: <scp>CSF</scp> Profiles of <scp>GCase</scp> , Sphingolipids, α ynuclein in <scp>PD_{GBA}</scp> . Movement Disorders, 2021, 36, 1216-1228.	2.2	40
26	Assessing White Matter Microstructure in Brain Regions with Different Myelin Architecture Using MRI. PLoS ONE, 2016, 11, e0167274.	1.1	37
27	Loss-of-function mutations in UDP-Glucose 6-Dehydrogenase cause recessive developmental epileptic encephalopathy. Nature Communications, 2020, 11, 595.	5.8	35
28	A Mitochondrial Myopathy in an Infant with Lactic Acidosis. Developmental Medicine and Child Neurology, 1990, 32, 528-531.	1.1	34
29	Impact of Hippotherapy on Gross Motor Function and Quality of Life in Children with Bilateral Cerebral Palsy: A Randomized Open-Label Crossover Study. Neuropediatrics, 2018, 49, 185-192.	0.3	31
30	Lesion characteristics driving right-hemispheric language reorganization in congenital left-hemispheric brain damage. Brain and Language, 2017, 173, 1-9.	0.8	30
31	Bi-allelic HPDL Variants Cause a Neurodegenerative Disease Ranging from Neonatal Encephalopathy to Adolescent-Onset Spastic Paraplegia. American Journal of Human Genetics, 2020, 107, 364-373.	2.6	30
32	Maternal perinatal depressive symptoms trajectories and impact on toddler behavior – the importance of symptom duration and maternal bonding. Journal of Affective Disorders, 2020, 273, 542-551.	2.0	30
33	Phenotypic variation between siblings with Metachromatic Leukodystrophy. Orphanet Journal of Rare Diseases, 2019, 14, 136.	1.2	29
34	SERAC1 deficiency causes complicated HSP: evidence from a novel splice mutation in a large family. Journal of Medical Genetics, 2018, 55, 39-47.	1.5	28
35	Plasticity during Early Brain Development Is Determined by Ontogenetic Potential. Neuropediatrics, 2017, 48, 066-071.	0.3	27
36	Endocrine and Growth Abnormalities in 4H Leukodystrophy Caused by Variants in <i>POLR3A</i> , <i>POLR3B</i> , and <i>POLR1C</i> . Journal of Clinical Endocrinology and Metabolism, 2021, 106, e660-e674.	1.8	26

#	Article	IF	CITATIONS
37	The European Reference Network for Rare Neurological Diseases. Frontiers in Neurology, 2020, 11, 616569.	1.1	26
38	Neuroimaging Patterns and Function in Cerebral Palsy—Application of an MRI Classification. Frontiers in Neurology, 2020, 11, 617740.	1.1	25
39	<i>CNTNAP1</i> mutations cause CNS hypomyelination and neuropathy with or without arthrogryposis. Neurology: Genetics, 2017, 3, e144.	0.9	24
40	The Origin of the Cerebral Palsies: Contribution of Population-Based Neuroimaging Data. Neuropediatrics, 2020, 51, 113-119.	0.3	24
41	POLR3A variants with striatal involvement and extrapyramidal movement disorder. Neurogenetics, 2020, 21, 121-133.	0.7	24
42	Severity of Cerebral Palsy—The Impact of Associated Impairments. Neuropediatrics, 2020, 51, 120-128.	0.3	23
43	Early clinical course after hematopoietic stem cell transplantation in children with juvenile metachromatic leukodystrophy. Molecular and Cellular Pediatrics, 2020, 7, 12.	1.0	23
44	Enzymatic characterization of novel arylsulfatase A variants using human arylsulfatase Aâ€deficient immortalized mesenchymal stromal cells. Human Mutation, 2017, 38, 1511-1520.	1.1	20
45	Natural history of Krabbe disease – a nationwide study in Germany using clinical and MRI data. Orphanet Journal of Rare Diseases, 2020, 15, 243.	1.2	17
46	The impact of severe rare chronic neurological disease in childhood on the quality of life of families—a study on MLD and PCH2. Orphanet Journal of Rare Diseases, 2021, 16, 211.	1.2	15
47	Intravenous arylsulfatase A in metachromatic leukodystrophy: a phase 1/2 study. Annals of Clinical and Translational Neurology, 2021, 8, 66-80.	1.7	15
48	Hereditary diffuse leukoencephalopathy with spheroids (HDLS) with a novel CSF1R mutation and spinal cord involvement. Journal of the Neurological Sciences, 2015, 358, 515-517.	0.3	12
49	Thickening of the peripheral nerves in metachromatic leukodystrophy. Journal of the Neurological Sciences, 2016, 368, 399-401.	0.3	12
50	<i>De novo</i> stop-loss variants in <i>CLDN11</i> cause hypomyelinating leukodystrophy. Brain, 2021, 144, 411-419.	3.7	12
51	Defining the phenotypical spectrum associated with variants in <i>TUBB2A</i> . Journal of Medical Genetics, 2021, 58, 33-40.	1.5	11
52	Decreasing cerebral palsy prevalence in multiple births in the modern era: a population cohort study of European data. Archives of Disease in Childhood: Fetal and Neonatal Edition, 2021, 106, 125-130.	1.4	11
53	Growth in very preterm children: Head growth after discharge is the best independent predictor for cognitive outcome. Early Human Development, 2016, 103, 183-188.	0.8	10
54	T2-Pseudonormalization and Microstructural Characterization in Advanced Stages of Late-infantile Metachromatic Leukodystrophy. Clinical Neuroradiology, 2021, 31, 969-980.	1.0	10

#	Article	IF	CITATIONS
55	Therapies of lysosomal storage disorders targeting the brain. Lancet, The, 2016, 388, 440-442.	6.3	9
56	Comparative Analysis of Cerebral Magnetic Resonance Imaging Changes in Nontreated Infantile, Juvenile and Adult Patients with Niemann-Pick Disease Type C. Neuropediatrics, 2020, 51, 037-044.	0.3	9
57	Brain morphometry in Pontocerebellar Hypoplasia type 2. Orphanet Journal of Rare Diseases, 2016, 11, 100.	1.2	8
58	Optimization of Enzyme Essays to Enhance Reliability of Activity Measurements in Leukocyte Lysates for the Diagnosis of Metachromatic Leukodystrophy and Gangliosidoses. Cells, 2020, 9, 2553.	1.8	8
59	The Role of Neuroimaging and Genetic Analysis in the Diagnosis of Children With Cerebral Palsy. Frontiers in Neurology, 2020, 11, 628075.	1.1	8
60	A Mutation-Agnostic Hematopoietic Stem Cell Gene Therapy for Metachromatic Leukodystrophy. CRISPR Journal, 2022, 5, 66-79.	1.4	8
61	Microstructure of transcallosal motor fibers reflects type of cortical (re-)organization in congenital hemiparesis. European Journal of Paediatric Neurology, 2014, 18, 691-697.	0.7	7
62	Rare Variant of GM2 Gangliosidosis through Activator-Protein Deficiency. Neuropediatrics, 2017, 48, 127-130.	0.3	6
63	Acute-onset paralytic strabismus in toddlers is important to consider as a potential early sign of late-infantile Metachromatic Leukodystrophy. European Journal of Paediatric Neurology, 2022, 37, 87-93.	0.7	6
64	Hematopoietic Stem Cell Transplantation with Mesenchymal Stromal Cells in Children with Metachromatic Leukodystrophy. Stem Cells and Development, 2022, 31, 163-175.	1.1	6
65	Preterm Cognitive outcome and socioeconomic status. Acta Paediatrica, International Journal of Paediatrics, 2012, 101, 557-558.	0.7	5
66	Cerebellar Bottom-of-Fissure Dysplasia—a Novel Cerebellar Gray Matter Neuroimaging Pattern. Cerebellum, 2016, 15, 705-709.	1.4	5
67	Aicardi-Goutières syndrome due to a paternal mosaic IFIH1 mutation. Neurology: Genetics, 2020, 6, e384.	0.9	5
68	Extremely low arylsulfatase A enzyme activity does not necessarily cause symptoms: A longâ€ŧerm followâ€up and review of the literature. JIMD Reports, 2022, 63, 292-302.	0.7	5
69	Pontocerebellar hypoplasia type 11: Does the genetic defect determine timing of cerebellar pathology?. European Journal of Medical Genetics, 2020, 63, 103938.	0.7	4
70	Lesions in early cerebellar development – do they matter?. Developmental Medicine and Child Neurology, 2010, 52, 694-694.	1.1	3
71	Measurement of recombinant human arylsulfatase A and leukocyte sulfatase activities by analytical isotachophoresis. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2019, 1124, 109-113.	1.2	3
72	Enlargement of peripheral nerves in Krabbe disease: The diagnostic value of nerve ultrasound. Muscle and Nerve, 2020, 61, E24-E27.	1.0	3

#	Article	IF	CITATIONS
73	Longâ€ŧerm disease course of two patients with multiple sulfatase deficiency differs from metachromatic leukodystrophy in a broad cohort. JIMD Reports, 2021, 58, 80-88.	0.7	3
74	Grey matter injury in cerebral palsy – pallidum for the role of the predicting severity. Developmental Medicine and Child Neurology, 2015, 57, 1089-1090.	1.1	2
75	Interference with prenatal, perinatal, and neonatal brain development is associated with a high risk for autism and attentionâ€deficit/hyperactivity disorder. Developmental Medicine and Child Neurology, 2021, , .	1.1	2
76	Characterisation of Aicardi-Goutières syndrome. Lancet Neurology, The, 2013, 12, 1131-1132.	4.9	1
77	Prof. Bengt Hagberg (1923–2015). Neuropediatrics, 2015, 46, 433-434.	0.3	1
78	Motor dysfunction in NF1: Mediated by attention deficit or inherent to the disorder?. European Journal of Paediatric Neurology, 2018, 22, 164-169.	0.7	1
79	Paediatric neurology: traditional opinions revisited. Lancet Neurology, The, 2008, 7, 16-18.	4.9	0
80	Destructive Subependymal Cysts following Ventriculitis–Pathomechanisms and Treatment. Neuropediatrics, 2014, 45, 192-195.	0.3	0
81	Prof. Jean Fran§ois Marie Aicardi (1926–2015). Neuropediatrics, 2015, 46, 431-432.	0.3	0
82	Herausforderungen in der Kinder- und Jugendmedizin. Monatsschrift Fur Kinderheilkunde, 2020, 168, 1075-1078.	0.1	0
83	The Cerebral Palsies—Using a Common Language in Research Allows New Insights. Neuropediatrics, 2020, 51, 087-088.	0.3	0
84	Spasmodic Abdominal Pain and Other Gastrointestinal Symptoms in Pontocerebellar Hypoplasia Type 2. Neuropediatrics, 2021, 52, 495-498.	0.3	0