
Jennifer E Adair

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9383180/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Towards access for all: 1st Working Group Report for the Global Gene Therapy Initiative (GGTI). Gene Therapy, 2023, 30, 216-221.	2.3	6
2	Intraosseous delivery of platelet-targeted factor VIII lentiviral vector in humanized NBSGW mice. Blood Advances, 2022, 6, 5556-5569.	2.5	2
3	A key toolbox for cellular barcoding analysis. Nature Computational Science, 2021, 1, 251-252.	3.8	1
4	Clonal kinetics and single-cell transcriptional profiling of CAR-T cells in patients undergoing CD19 CAR-T immunotherapy. Nature Communications, 2020, 11, 219.	5.8	167
5	Purification of Human CD34+CD90+ HSCs Reduces Target Cell Population and Improves Lentiviral Transduction for Gene Therapy. Molecular Therapy - Methods and Clinical Development, 2020, 18, 679-691.	1.8	28
6	DNA Barcoding in Nonhuman Primates Reveals Important Limitations in Retrovirus Integration Site Analysis. Molecular Therapy - Methods and Clinical Development, 2020, 17, 796-809.	1.8	15
7	Envelope-Specific Adaptive Immunity following Transplantation of Hematopoietic Stem Cells Modified with VSV-G Lentivirus. Molecular Therapy - Methods and Clinical Development, 2020, 19, 438-446.	1.8	4
8	Resveratrol trimer enhances gene delivery to hematopoietic stem cells by reducing antiviral restriction at endosomes. Blood, 2019, 134, 1298-1311.	0.6	27
9	Therapeutically relevant engraftment of a CRISPR-Cas9–edited HSC-enriched population with HbF reactivation in nonhuman primates. Science Translational Medicine, 2019, 11, .	5.8	88
10	Targeted homology-directed repair in blood stem and progenitor cells with CRISPR nanoformulations. Nature Materials, 2019, 18, 1124-1132.	13.3	113
11	Autologous, Gene-Modified Hematopoietic Stem and Progenitor Cells Repopulate the Central Nervous System with Distinct Clonal Variants. Stem Cell Reports, 2019, 13, 91-104.	2.3	10
12	Driving CARs Across New Borders. Human Gene Therapy, 2018, 29, 529-529.	1.4	0
13	Rapid immune reconstitution of SCID-X1 canines after G-CSF/AMD3100 mobilization and in vivo gene therapy. Blood Advances, 2018, 2, 987-999.	2.5	27
14	Novel lineage depletion preserves autologous blood stem cells for gene therapy of Fanconi anemia complementation group A. Haematologica, 2018, 103, 1806-1814.	1.7	13
15	UM171 Enhances Lentiviral Gene Transfer and Recovery of Primitive Human Hematopoietic Cells. Molecular Therapy - Methods and Clinical Development, 2018, 10, 156-164.	1.8	21
16	Minimal conditioning in Fanconi anemia promotes multiâ€lineage marrow engraftment at 10â€fold lower cell doses. Journal of Gene Medicine, 2018, 20, e3050.	1.4	1
17	HIV infection results in clonal expansions containing integrations within pathogenesis-related biological pathways. JCI Insight, 2018, 3, .	2.3	15
18	Safe and Effective Gene Therapy for Murine Wiskott-Aldrich Syndrome Using an Insulated Lentiviral Vector. Molecular Therapy - Methods and Clinical Development, 2017, 4, 1-16.	1.8	11

Jennifer E Adair

#	Article	IF	CITATIONS
19	InÂVivo Murine-Matured Human CD3 + Cells as a Preclinical Model for T Cell-Based Immunotherapies. Molecular Therapy - Methods and Clinical Development, 2017, 6, 17-30.	1.8	13
20	A distinct hematopoietic stem cell population for rapid multilineage engraftment in nonhuman primates. Science Translational Medicine, 2017, 9, .	5.8	97
21	Hematopoietic Stem Cell Approaches to Cancer. Hematology/Oncology Clinics of North America, 2017, 31, 897-912.	0.9	15
22	Endothelial Cells Promote Expansion of Long-Term Engrafting Marrow Hematopoietic Stem and Progenitor Cells in Primates. Stem Cells Translational Medicine, 2017, 6, 864-876.	1.6	28
23	Lessons Learned from Two Decades of Clinical Trial Experience in Gene Therapy for Fanconi Anemia. Current Gene Therapy, 2017, 16, 338-348.	0.9	31
24	Multilineage polyclonal engraftment of Cal-1 gene-modified cells and in vivo selection after SHIV infection in a nonhuman primate model of AIDS. Molecular Therapy - Methods and Clinical Development, 2016, 3, 16007.	1.8	46
25	Semi-automated closed system manufacturing of lentivirus gene-modified haematopoietic stem cells for gene therapy. Nature Communications, 2016, 7, 13173.	5.8	30
26	Gene Therapy for Fanconi Anemia in Seattle: Clinical Experience and Next Steps. Blood, 2016, 128, 3510-3510.	0.6	10
27	Vascular niche promotes hematopoietic multipotent progenitor formation from pluripotent stem cells. Journal of Clinical Investigation, 2015, 125, 1243-1254.	3.9	96
28	211Astatine-Conjugated Monoclonal CD45 Antibody-Based Nonmyeloablative Conditioning for Stem Cell Gene Therapy. Human Gene Therapy, 2015, 26, 399-406.	1.4	16
29	VISA - Vector Integration Site Analysis server: a web-based server to rapidly identify retroviral integration sites from next-generation sequencing. BMC Bioinformatics, 2015, 16, 212.	1.2	37
30	Foamy viral vector integration sites in SCID-repopulating cells after MGMTP140K-mediated in vivo selection. Gene Therapy, 2015, 22, 591-595.	2.3	14
31	Pigtailed macaques as a model to study long-term safety of lentivirus vector-mediated gene therapy for hemoglobinopathies. Molecular Therapy - Methods and Clinical Development, 2014, 1, 14055.	1.8	10
32	Applying the Speed-Dating Model and Other Approaches to Foster Future Leaders for the American Society of Gene and Cell Therapy. Molecular Therapy, 2014, 22, 1397-1398.	3.7	4
33	MGMT Stem Cell Selection and Protection. , 2014, , 409-422.		0
34	Gene Therapy: Charting a Future Course—Summary of a National Institutes of Health Workshop, April 12, 2013. Human Gene Therapy, 2014, 25, 488-497.	1.4	12
35	Intravenous injection of a foamy virus vector to correct canine SCID-X1. Blood, 2014, 123, 3578-3584.	0.6	36
36	Rapamycin relieves lentiviral vector transduction resistance in human and mouse hematopoietic stem cells. Blood, 2014, 124, 913-923.	0.6	78

Jennifer E Adair

#	Article	IF	CITATIONS
37	High-Throughput Genomic Mapping of Vector Integration Sites in Gene Therapy Studies. Methods in Molecular Biology, 2014, 1185, 321-344.	0.4	33
38	Gene therapy enhances chemotherapy tolerance and efficacy in glioblastoma patients. Journal of Clinical Investigation, 2014, 124, 4082-4092.	3.9	83
39	Efficient generation, purification, and expansion of CD34+ hematopoietic progenitor cells from nonhuman primate–induced pluripotent stem cells. Blood, 2012, 120, e35-e44.	0.6	31
40	Outside the Box—Novel Therapeutic Strategies for Glioblastoma. Cancer Journal (Sudbury, Mass), 2012, 18, 51-58.	1.0	9
41	Cyclophosphamide promotes engraftment of gene-modified cells in a mouse model of Fanconi anemia without causing cytogenetic abnormalities. Journal of Molecular Medicine, 2012, 90, 1283-1294.	1.7	9
42	Chemoprotection in glioblastoma therapy: reality or a dream?. CNS Oncology, 2012, 1, 11-14.	1.2	0
43	Extended Survival of Glioblastoma Patients After Chemoprotective HSC Gene Therapy. Science Translational Medicine, 2012, 4, 133ra57.	5.8	91
44	Hematopoietic stem cell expansion and gene therapy. Cytotherapy, 2011, 13, 1164-1171.	0.3	26
45	Stem Cell Gene Therapy for Fanconi Anemia: Report from the 1st International Fanconi Anemia Gene Therapy Working Group Meeting. Molecular Therapy, 2011, 19, 1193-1198.	3.7	45
46	Efficient Generation of Nonhuman Primate Induced Pluripotent Stem Cells. Stem Cells and Development, 2011, 20, 795-807.	1.1	26
47	Safeguarding Nonhuman Primate iPS Cells With Suicide Genes. Molecular Therapy, 2011, 19, 1667-1675.	3.7	49
48	Preclinical correction of human Fanconi anemia complementation group A bone marrow cells using a safety-modified lentiviral vector. Gene Therapy, 2010, 17, 1244-1252.	2.3	37
49	Efficient and stable MGMT-mediated selection of long-term repopulating stem cells in nonhuman primates. Journal of Clinical Investigation, 2010, 120, 2345-2354.	3.9	101
50	Inter-α-trypsin Inhibitor Promotes Bronchial Epithelial Repair after Injury through Vitronectin Binding. Journal of Biological Chemistry, 2009, 284, 16922-16930.	1.6	34
51	High-Mobility Group A1 Proteins Inhibit Expression of Nucleotide Excision Repair Factor Xeroderma Pigmentosum Group A. Cancer Research, 2007, 67, 6044-6052.	0.4	30
52	Gene-specific nucleotide excision repair is impaired in human cells expressing elevated levels of high mobility group A1 nonhistone proteins. DNA Repair, 2007, 6, 1371-1379.	1.3	18
53	Inhibition of Nucleotide Excision Repair by High Mobility Group Protein HMGA1. Journal of Biological Chemistry, 2005, 280, 32184-32192.	1.6	46
54	Role of high mobility group (HMG) chromatin proteins in DNA repair. DNA Repair, 2005, 4, 926-938.	1.3	93

#	Article	IF	CITATIONS
55	Human KIT ligand promoter is positively regulated by HMGA1 in breast and ovarian cancer cells. Oncogene, 2004, 23, 8557-8562.	2.6	31