
Raffaello Mazzaro

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9383149/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	MgO as promoter for electrocatalytic activities of Co3O4–MgO composite via abundant oxygen vacancies and Co2+ ions towards oxygen evolution reaction. International Journal of Hydrogen Energy, 2023, 48, 12672-12682.	7.1	30
2	Consensus statement: Standardized reporting of power-producing luminescent solar concentrator performance. Joule, 2022, 6, 8-15.	24.0	66
3	pH Switchable Water Dispersed Photocatalytic Nanoparticles. Chemistry - A European Journal, 2022, 28, .	3.3	4
4	Charge Separation Efficiency in WO ₃ /BiVO ₄ Photoanodes with CoFe Prussian Blue Catalyst Studied by Wavelengthâ€Dependent Intensityâ€Modulated Photocurrent Spectroscopy. Solar Rrl, 2022, 6, .	5.8	9
5	Indium-modified copper nanocubes for syngas production by aqueous CO ₂ electroreduction. Dalton Transactions, 2022, 51, 10787-10798.	3.3	3
6	Decorating vertically aligned MoS2 nanoflakes with silver nanoparticles for inducing a bifunctional electrocatalyst towards oxygen evolution and oxygen reduction reaction. Nano Energy, 2021, 81, 105664.	16.0	46
7	In Situ-Generated Oxide in Sn-Doped Nickel Phosphide Enables Ultrafast Oxygen Evolution. ACS Catalysis, 2021, 11, 4520-4529.	11.2	41
8	Processable Thiopheneâ€Based Polymers with Tailored Electronic Properties and their Application in Solidâ€5tate Electrochromic Devices Using Nanoparticle Films. Advanced Electronic Materials, 2021, 7, 2100166.	5.1	9
9	Controllable Synthesis of 2D Nonlayered Cr2S3 Nanosheets and Their Electrocatalytic Activity Toward Oxygen Evolution Reaction. Frontiers in Chemical Engineering, 2021, 3, .	2.7	5
10	NiMoO ₄ @Co ₃ O ₄ Core–Shell Nanorods: In Situ Catalyst Reconstruction toward High Efficiency Oxygen Evolution Reaction. Advanced Energy Materials, 2021, 11, 2101324.	19.5	97
11	Opportunities from Doping of Non ritical Metal Oxides in Last Generation Light onversion Devices. Advanced Energy Materials, 2021, 11, 2101041.	19.5	29
12	Reduced graphene oxide-ZnO hybrid composites as photocatalysts: The role of nature of the molecular target in catalytic performance. Ceramics International, 2021, 47, 19346-19355.	4.8	10
13	A simple and efficient visible light photodetector based on Co3O4/ZnO composite. Optical and Quantum Electronics, 2021, 53, 1.	3.3	8
14	Bioinspired Design of Grapheneâ€Based Materials. Advanced Functional Materials, 2020, 30, 2007458.	14.9	15
15	Microwave-Assisted vs. Conventional Hydrothermal Synthesis of MoS2 Nanosheets: Application towards Hydrogen Evolution Reaction. Crystals, 2020, 10, 1040.	2.2	26
16	Au-Decorated Ce–Ti Mixed Oxides for Efficient CO Preferential Photooxidation. ACS Applied Materials & Interfaces, 2020, 12, 38019-38030.	8.0	12
17	Facile NiCo2S4/C nanocomposite: an efficient material for water oxidation. Tungsten, 2020, 2, 403-410.	4.8	15
18	Water-soluble silicon nanocrystals as NIR luminescent probes for time-gated biomedical imaging. Nanoscale, 2020, 12, 7921-7926.	5.6	20

RAFFAELLO MAZZARO

#	Article	IF	CITATIONS
19	The role of the capping agent and nanocrystal size in photoinduced hydrogen evolution using CdTe/CdS quantum dot sensitizers. Dalton Transactions, 2020, 49, 10212-10223.	3.3	8
20	Nickel–cobalt bimetallic sulfide NiCo ₂ S ₄ nanostructures for a robust hydrogen evolution reaction in acidic media. RSC Advances, 2020, 10, 22196-22203.	3.6	14
21	Role of refractive index in highly efficient laminated luminescent solar concentrators. Nano Energy, 2020, 70, 104470.	16.0	25
22	Functional Nickel Oxide Nanostructures for Ethanol Oxidation in Alkaline Media. Electroanalysis, 2020, 32, 1052-1059.	2.9	21
23	Hybrid Silicon Nanocrystals for Color-Neutral and Transparent Luminescent Solar Concentrators. ACS Photonics, 2019, 6, 2303-2311.	6.6	63
24	Advanced Electrocatalysts for Hydrogen Evolution Reaction Based on Core–Shell MoS ₂ /TiO ₂ Nanostructures in Acidic and Alkaline Media. ACS Applied Energy Materials, 2019, 2, 2053-2062.	5.1	67
25	Self-Powered Photodetectors Based on Core–Shell ZnO–Co ₃ O ₄ Nanowire Heterojunctions. ACS Applied Materials & Interfaces, 2019, 11, 23454-23462.	8.0	71
26	A sensitive enzyme-free lactic acid sensor based on NiO nanoparticles for practical applications. Analytical Methods, 2019, 11, 3578-3583.	2.7	39
27	Ag ₂ S/MoS ₂ Nanocomposites Anchored on Reduced Graphene Oxide: Fast Interfacial Charge Transfer for Hydrogen Evolution Reaction. ACS Applied Materials & Interfaces, 2019, 11, 22380-22389.	8.0	55
28	A practical non-enzymatic urea sensor based on NiCo ₂ O ₄ nanoneedles. RSC Advances, 2019, 9, 14443-14451.	3.6	50
29	High efficiency sandwich structure luminescent solar concentrators based on colloidal quantum dots. Nano Energy, 2019, 60, 119-126.	16.0	52
30	Hematite nanostructures: An old material for a new story. Simultaneous photoelectrochemical oxidation of benzylamine and hydrogen production through Ti doping. Nano Energy, 2019, 61, 36-46.	16.0	46
31	Plasma assisted vapor solid deposition of Co ₃ O ₄ tapered nanorods for energy applications. Journal of Materials Chemistry A, 2019, 7, 26302-26310.	10.3	5
32	The chemically reduced CuO–Co ₃ O ₄ composite as a highly efficient electrocatalyst for oxygen evolution reaction in alkaline media. Catalysis Science and Technology, 2019, 9, 6274-6284.	4.1	24
33	Colloidally stable silicon quantum dots as temperature biosensors. , 2019, , .		0
34	Controlled Functionalization of Reduced Graphene Oxide Enabled by Microfluidic Reactors. Chemistry of Materials, 2018, 30, 2905-2914.	6.7	8
35	Controlling the Functional Properties of Oligothiophene Crystalline Nano/Microfibers via Tailoring of the Selfâ€Assembling Molecular Precursors. Advanced Functional Materials, 2018, 28, 1801946.	14.9	21
36	Self-Assembly and Exfoliation of a Molecular Solid Based on Cooperative B–N and Hydrogen Bonds. Crystal Growth and Design, 2018, 18, 7259-7263.	3.0	9

RAFFAELLO MAZZARO

#	Article	IF	CITATIONS
37	The Renaissance of Luminescent Solar Concentrators: The Role of Inorganic Nanomaterials. Advanced Energy Materials, 2018, 8, 1801903.	19.5	109
38	Design of Carbon Dots for Metal-free Photoredox Catalysis. ACS Applied Materials & Interfaces, 2018, 10, 40560-40567.	8.0	79
39	Luminescent europium(<scp>iii</scp>) complexes containing an electron rich 1,2,3-triazolyl-pyridyl ligand. New Journal of Chemistry, 2018, 42, 11064-11072.	2.8	3
40	Silica-supported silver nanoparticles as an efficient catalyst for aromatic C–H alkylation and fluoroalkylation. Dalton Transactions, 2018, 47, 9608-9616.	3.3	27
41	Poly(3-hexylthiophene) Nanoparticles Containing Thiophene- <i>S</i> , <i>S</i> -dioxide: Tuning of Dimensions, Optical and Redox Properties, and Charge Separation under Illumination. ACS Nano, 2017, 11, 1991-1999.	14.6	31
42	Engineering thiophene-based nanoparticles to induce phototransduction in live cells under illumination. Nanoscale, 2017, 9, 9202-9209.	5.6	30
43	Contamination-free graphene by chemical vapor deposition in quartz furnaces. Scientific Reports, 2017, 7, 9927.	3.3	70
44	Long-lived luminescence of silicon nanocrystals: from principles to applications. Physical Chemistry Chemical Physics, 2017, 19, 26507-26526.	2.8	53
45	Silica Nanospheres Coated by Ultrasmall Ag0 Nanoparticles for Oxidative Catalytic Application. Colloids and Interface Science Communications, 2017, 21, 1-5.	4.1	12
46	Size-Dependent Photoluminescence Efficiency of Silicon Nanocrystal Quantum Dots. Journal of Physical Chemistry C, 2017, 121, 23240-23248.	3.1	104
47	Tracking graphene by fluorescence imaging: a tool for detecting multiple populations of graphene in solution. Nanoscale, 2016, 8, 8505-8511.	5.6	4
48	Photoinduced Electron-Transfer Quenching of Luminescent Silicon Nanocrystals as a Way To Estimate the Position of the Conduction and Valence Bands by Marcus Theory. Chemistry of Materials, 2016, 28, 6664-6671.	6.7	21
49	Light-enhanced liquid-phase exfoliation and current photoswitching in graphene–azobenzene composites. Nature Communications, 2016, 7, 11090.	12.8	97
50	Liquid-Phase Exfoliation of Graphite into Single- and Few-Layer Graphene with α-Functionalized Alkanes. Journal of Physical Chemistry Letters, 2016, 7, 2714-2721.	4.6	73
51	Photoinduced Processes between Pyrene-Functionalized Silicon Nanocrystals and Carbon Allotropes. Chemistry of Materials, 2015, 27, 4390-4397.	6.7	25
52	Uniform Functionalization of High-Quality Graphene with Platinum Nanoparticles for Electrocatalytic Water Reduction. ChemistryOpen, 2015, 4, 268-273.	1.9	12
53	Graphene: A Supramolecular Strategy to Leverage the Liquid-Phase Exfoliation of Graphene in the Presence of Surfactants: Unraveling the Role of the Length of Fatty Acids (Small 14/2015). Small, 2015, 11, 1736-1736.	10.0	1
54	A Supramolecular Strategy to Leverage the Liquidâ€Phase Exfoliation of Graphene in the Presence of Surfactants: Unraveling the Role of the Length of Fatty Acids. Small, 2015, 11, 1691-1702.	10.0	87

RAFFAELLO MAZZARO

#	Article	IF	CITATIONS
55	Photophysical and structural characterisation of <i>in situ</i> formed quantum dots. Physical Chemistry Chemical Physics, 2014, 16, 9556-9564.	2.8	22
56	Synthesis and properties of ZnTe and ZnTe/ZnS core/shell semiconductor nanocrystals. Journal of Materials Chemistry C, 2014, 2, 2877-2886.	5.5	39
57	Photoactive Dendrimer for Water Photoreduction: A Scaffold to Combine Sensitizers and Catalysts. Journal of Physical Chemistry Letters, 2014, 5, 798-803.	4.6	20
58	NiNPs@rGO Nanocomposites as Heterogenous Catalysts for Thiocarboxylation Cross-Coupling Reactions. Synthesis, 0, , .	2.3	5