
Clara Uriel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9383052/publications.pdf Version: 2024-02-01

CIADA LIDIFI

#	Article	IF	CITATIONS
1	Access to n-pentenyl tetra- and pentasaccharide analogues of the antitumor drug PI-88 based on 1,2-methyl orthoester glycosyl donors. Carbohydrate Research, 2022, 516, 108557.	2.3	1
2	A Concise Synthesis of a BODIPY-Labeled Tetrasaccharide Related to the Antitumor PI-88. Molecules, 2021, 26, 2909.	3.8	4
3	A Concise Route to Water-Soluble 2,6-Disubstituted BODIPY-Carbohydrate Fluorophores by Direct Ferrier-Type C-Glycosylation. Journal of Organic Chemistry, 2021, 86, 9181-9188.	3.2	6
4	Access to 2,6-Dipropargylated BODIPYs as "Clickable―Congeners of Pyrromethene-567 Dye: Photostability and Synthetic Versatility. Organic Letters, 2021, 23, 6801-6806.	4.6	15
5	In Vitro Antimicrobial Activity of Isopimarane-Type Diterpenoids. Molecules, 2020, 25, 4250.	3.8	6
6	BODIPYs as Chemically Stable Fluorescent Tags for Synthetic Glycosylation Strategies towards Fluorescently Labeled Saccharides. Chemistry - A European Journal, 2020, 26, 5388-5399.	3.3	12
7	Tuning the Photonic Behavior of Symmetrical bis-BODIPY Architectures: The Key Role of the Spacer Moiety. Frontiers in Chemistry, 2019, 7, 801.	3.6	5
8	Towards Efficient and Photostable Redâ€Emitting Photonic Materials Based on Symmetric Allâ€BODIPYâ€Triads, â€Pentads, and â€Hexads. Chemistry - A European Journal, 2019, 25, 14959-14971.	3.3	8
9	A Malonyl-Based Scaffold for Conjugatable Multivalent Carbohydrate-BODIPY Presentations. Molecules, 2019, 24, 2050.	3.8	6
10	Methyl 1,2â€Orthoesters in Acidâ€Washed Molecular Sieves Mediated Glycosylations. ChemistrySelect, 2016, 1, 6011-6015.	1.5	9
11	Ferrier–Nicholas pyranosidic cations: application to diversity-oriented synthesis. Pure and Applied Chemistry, 2014, 86, 1357-1364.	1.9	4
12	Sugar Furanoses as Useful Handles for Molecular Diversity. Current Organic Synthesis, 2014, 11, 342-360.	1.3	4
13	An Overview of Reliable Radical Cyclization Strategies for the Preparation of 5a- Carbapyranoses. Current Organic Chemistry, 2014, 18, 1701-1715.	1.6	0
14	Recent Developments in the Ferrier Rearrangement. European Journal of Organic Chemistry, 2013, 2013, 7221-7262.	2.4	136
15	Glycosyl fluorides from n-pentenyl-related glycosyl donors— Application to glycosylation strategies. Canadian Journal of Chemistry, 2013, 91, 51-65.	1.1	4
16	Furanose-based templates in the chemoselective generation of molecular diversity. Carbohydrate Chemistry, 2012, , 376-397.	0.3	1
17	Ready access to a branched Man5 oligosaccharide based on regioselective glycosylations of a mannose-tetraol with n-pentenyl orthoesters. Organic and Biomolecular Chemistry, 2012, 10, 8361.	2.8	16
18	Unexpected Stereocontrolled Access to 1α,1′β-Disaccharides from Methyl 1,2-Ortho Esters. Journal of Organic Chemistry, 2012, 77, 795-800.	3.2	17

CLARA URIEL

#	Article	IF	CITATIONS
19	Methyl 1,2â€Orthoesters as Useful Glycosyl Donors in Glycosylation Reactions: A Comparison with <i>n</i> â€Pentâ€4â€enyl 1,2â€Orthoesters. European Journal of Organic Chemistry, 2012, 2012, 3122-3131.	2.4	15
20	Synthetic Strategies Directed Towards 5a arbahexopyranoses and Derivatives Based on 6â€ <i>endo</i> â€ <i>trig</i> Radical Cyclizations. European Journal of Organic Chemistry, 2011, 2011, 7116-7132.	2.4	6
21	Sonogashira Couplings of Halo―and Epoxyâ€Haloâ€ <i>exo</i> â€Glycals: Concise Entry to Carbohydrateâ€Derived Enynes. European Journal of Organic Chemistry, 2010, 2010, 2910-2920.	2.4	17
22	1â€ <i>exo</i> â€Alkylideneâ€2,3â€anhydrofuranoses: Valuable Synthons in the Preparation of Furanoseâ€Based Templates. European Journal of Organic Chemistry, 2010, 2010, 5619-5632.	2.4	9
23	Reciprocal Donor–Acceptor Selectivity: the Influence of the Donor Oâ€2 Substituent in the Regioselective Mannosylation of <i>myo</i> â€Inositol Orthopentanoate. European Journal of Organic Chemistry, 2009, 2009, 403-411.	2.4	14
24	Synthesis of <i>C</i> â€l Alkyl and Aryl Glycals from Pyranosyl or Furanosyl Chlorides by Treatment with Organolithium Reagents. European Journal of Organic Chemistry, 2009, 2009, 3579-3588.	2.4	17
25	Reaction of 1,2-Orthoesters with HFâ^'Pyridine: A Method for the Preparation of Partly Unprotected Glycosyl Fluorides and Their Use in Saccharide Synthesis. Organic Letters, 2009, 11, 4128-4131.	4.6	18
26	Ready Transformation of Partially Unprotected Thioglycosides into Glycosyl Fluorides Mediated by NIS/HF–Pyridine or Et ₃ N·3HF. European Journal of Organic Chemistry, 2008, 2008, 5037-5041.	2.4	12
27	IPy ₂ BF ₄ /HF-Pyridine:  A New Combination of Reagents for the Transformation of Partially Unprotected Thioglycosides and <i>n</i> Pentenyl Glycosides to Glycosyl Fluorides. Journal of Organic Chemistry, 2007, 72, 10268-10271.	3.2	21
28	IPy2BF4-Mediated Transformation ofn-Pentenyl Glycosides to Glycosyl Fluorides:Â A New Pair of Semiorthogonal Glycosyl Donors. Organic Letters, 2007, 9, 2759-2762.	4.6	33
29	6-endo Versus 5-exo radical cyclization: streamlined syntheses of carbahexopyranoses and derivatives by 6-endo-trig radical cyclization. Tetrahedron Letters, 2007, 48, 1645-1649.	1.4	17
30	Protecting Groups in Carbohydrate Chemistry Profoundly Influence All Selectivities in Glycosyl Couplings. ACS Symposium Series, 2007, , 91-117.	0.5	21
31	Formation and Reactivity of Novel Pyranosidic Nicholas Oxocarbenium Ions:  Access toC-Ketosides and Branched-ChainC-Ketosides. Organic Letters, 2006, 8, 3187-3190.	4.6	20
32	Novel strategies for the preparation of aminocarbasugar analogues: syntheses of N-substituted aminocyclitols from d-mannose. Tetrahedron: Asymmetry, 2005, 16, 2401-2407.	1.8	8
33	Synthesis of 2,3:4,6-di-O-isopropylidene-d-allopyranose from d-glucose. Carbohydrate Research, 2005, 340, 1872-1875.	2.3	10
34	Some Aspects of Selectivity in the Reaction of Glycosyl Donors*. Journal of Carbohydrate Chemistry, 2005, 24, 665-675.	1.1	12
35	Iterative, orthogonal strategy for oligosaccharide synthesis based on the regioselective glycosylation of polyol acceptors with partially unprotected n-pentenyl-orthoesters: further evidence for reciprocal donor acceptor selectivity (RDAS). Chemical Communications, 2005, , 5088.	4.1	40
36	Relevance of the Glycosyl Donor to the Regioselectivity of Glycosidation of Primary-Secondary Diol Acceptors and Application of These Ideas to in Situ Three-Component Double Differential Glycosidation§. Organic Letters, 2005, 7, 4899-4902.	4.6	37

CLARA URIEL

#	Article	IF	CITATIONS
37	Reciprocal Donor Acceptor Selectivity (RDAS) and Paulsen's Concept of "Match―in Saccharide Coupling. European Journal of Organic Chemistry, 2004, 2004, 1387-1395.	2.4	67
38	Reciprocal Donor Acceptor Selectivity (RDAS) and Paulsen′s Concept of "Match―in Saccharide Coupling. ChemInform, 2004, 35, no.	0.0	0
39	Stereoselective Synthesis of C- and N-Ketosides by Lewis Acid-Catalyzed C- and N-Glycosidation of Alkynyl, Phenyl, and Methyl Ketoses. European Journal of Organic Chemistry, 2003, 2003, 4830-4837.	2.4	17
40	Thioglycoside and trichloroacetimidate donors in regioselective glycosidations. Comparison with n-pentenyl glycosides. Tetrahedron Letters, 2003, 44, 1417-1420.	1.4	30
41	Leads for Development of New Naphthalenesulfonate Derivatives with Enhanced Antiangiogenic Activity. Journal of Biological Chemistry, 2003, 278, 21774-21781.	3.4	42
42	Further Insight into â€~Matching' of Donors and Acceptors via Reciprocal ÂÐonor Acceptor Selectivity (RDAS) Studies. Synlett, 2003, 2003, 2203-2207.	1.8	2
43	Unexpected Role of O-2 "Protecting―Groups of Glycosyl Donors in Mediating Regioselective Glycosidation. Journal of the American Chemical Society, 2002, 124, 3198-3199.	13.7	43
44	Reciprocal donor acceptor selectivity (RDAS): A new concept for "matching" donors with acceptors. Canadian Journal of Chemistry, 2002, 80, 1075-1087.	1.1	34
45	One pot/two donors/one diol give one differentiated trisaccharide: powerful evidence for reciprocal donor–acceptor selectivity (RDAS). Chemical Communications, 2002, , 2104-2105.	4.1	35
46	Six- versus five-membered ring formation in radical cyclization of 1-vinyl-5-methyl-5-hexenyl radicals. Tetrahedron Letters, 2002, 43, 4997-5000.	1.4	23
47	Stereoselective synthesis of C-ketosides by Lewis acid-catalyzed C-glycosylation of alkynyl-ketoses. Tetrahedron Letters, 2002, 43, 8935-8940.	1.4	19
48	Synthesis of 2-Deoxyglycopyranosyl Thioureas from Glycals. Synthesis, 1999, 1999, 2049-2052.	2.3	5
49	A Short and Efficient Synthesis of 1,5-Dideoxy-1,5-imino-d-galactitol (1-deoxy-d-Galactostatin) and 1,5-Dideoxy-1,5-imino-l-altritol (1-deoxy-l-Altrostatin) from d-Galactose. Synlett, 1999, 1999, 593-595.	1.8	12
50	Use of N-Pivaloyl Imidazole as Protective Reagent for Sugars. Synthesis, 1998, 1998, 1787-1792.	2.3	14
51	Antiproliferative and Apoptotic Activities of Ketonucleosides and Keto-C-Glycosides against Non-Small-Cell Lung Cancer Cells with Intrinsic Drug Resistance. Antimicrobial Agents and Chemotherapy, 1998, 42, 779-784.	3.2	12
52	Hexose keto-C-glycoside conjugates: design, synthesis, cytotoxicity, and evaluation of their affinity for the glucose transporter glut-1. Bioorganic and Medicinal Chemistry, 1996, 4, 2081-2090.	3.0	15
53	Unsaturated epoxy-C-glycosides. A new class of antitumor compounds with DNA cleavage properties Bioorganic and Medicinal Chemistry Letters, 1994, 4, 421-426.	2.2	7